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Abstract: The prediction of bus arrival time is impor-
tant for passengers who want to determine their departure
time and reduce anxiety at bus stops that lack timetables.
The random forests based on the near neighbor (RFNN)
method is proposed in this article to predict bus travel
time, which has been calibrated and validated with real-
world data. A case study with two bus routes is con-
ducted, and the proposed RFNN is compared with four
methods: linear regression (LR), k-nearest neighbors
(KNN), support vector machine (SVM), and classic ran-
dom forest (RF). The results indicate that the proposed
model achieves high accuracy. That is, one bus route
has the results of 13.65 mean absolute error (MAE),
6.90% mean absolute percentage error (MAPE), 26.37
root mean squared error (RMSE) and 13.77 (MAE),
7.58% (MAPE), 29.01 (RMSE), respectively. RFNN
has a longer computation time of 44,301 seconds for a
data set with 14,182 data. The proposed method can be
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optimized by the technology of parallel computing and
can be applied to real-time prediction.

1 INTRODUCTION

In Intelligent Transportation Systems (ITSs) and Ad-
vanced Traveler Information Systems (ATISs), the pre-
diction of bus travel time with reasonable accuracy is
important. Travelers can efficiently arrange their sched-
ules and reduce their waiting time, if they can ob-
tain accurate bus arrival information, because waiting
time is more significant to a person than travel time
(Ben-Akiva and Lerman, 1985). The prediction of bus
arrival/running time is also important for bus operators.
The prediction results can provide information about
the future conditions of a bus system in the short term;
bus operators can adjust their bus schedules by applying
a higher or lower speed in advance. The prediction of
bus arrival time can reduce the waste of bus resources.
For example, bus travelers can change their travel mode
from bus to taxi or private car when they feel anxious
about bus delays without a reasonable expected arrival
time, especially for bus stops without timetables.
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The objective of the prediction of bus travel time is to
forecast the travel times of buses between two locations
(e.g., two bus stops). Traditional time-series models aim
to capture the characteristics of bus travel time over
time, which only requires travel time. In addition, Au-
tomatic Passenger Counter (APC) and Automatic Ve-
hicle Location (AVL) data are usually employed to pre-
dict bus travel time (Shalaby and Farhan, 2003). Studies
also seek relations between bus travel time and passen-
ger flows, which are collected from APC data. In these
APC-based methods, the travel times of buses are as-
sumed to be influenced by passenger flows at bus stops.
Meanwhile, AVL data is useful for prediction because
an AVL system provides the current locations of buses,
which can be applied to the prediction of the remaining
travel. In our study, we collect the data of buses from
the AVL system and use this data to measure current
traffic conditions on route segments.

A variety of prediction models for bus arrival/running
time have been developed over the past decades. His-
torical average models (Jeong, 2005; Williams and Hoel,
2003), nonparametric regression models (Chan et al.,
2009; Chang et al., 2010; Park et al., 2007; Smith et al.,
2002; Tam and Lam, 2009), time series models (Al-Deek
et al., 1998; Thomas et al., 2010; Chien et al., 2002;
Kalman, 1960; Shalaby and Farhan, 2003; Yu et al.,
2010), artificial neural network (ANN) models (Adeli,
2001; Adeli and Hung, 1994), and support vector ma-
chine (SVM) models (Yu et al., 2010; Yu et al., 2006)
are commonly used.

Historical average models assume that historical data
are similar to real-time data and predict the running
time of a particular trip by averaging over several pre-
vious trips. These models may be unreliable when real-
time data differ from historical data in spatial or tempo-
ral aspects.

Nonparametric regression models are simple because
of the absence of estimating parameters. In the last
decade, the k-nearest neighbor (KNN) model was ex-
tensively employed in many fields as a nonparametric
regression model. Chang et al. (2010) developed a KNN
model to estimate bus travel time; the results proved
that the model is effective according to the accuracy and
computing time of prediction.

Time series models assume a trend with time in the
data set and speculate the predicted value from the
trend; thus, these models are very dependent on the si-
milarity between historical prediction and real-time pre-
diction. The methods usually have a short time lag
when applied in real-time prediction. Kalman filtering
models have the ability to accommodate traffic fluc-
tuations with time-dependent parameters. Originating
from the state-space representations in modern control
theory, Kalman filter model is applied for predicting

short-term traffic demand and travel times. Chien and
Kuchipudi (2003) developed a path-based and a link-
based model to predict bus arrival time. Shalaby and
Farhan (2003) proposed a Kalman filter model to pre-
dict bus arrival time and discovered that Kalman filter
model outperformed the regression and ANN (artificial
neural network) models. An enhanced algorithm based
on Kalman filter model was developed to predict bus ar-
rival time and was proved more effective than the stan-
dard ANN models (Chen et al., 2004).

Artificial neural network models are widely used
in transportation (Adeli and Yeh, 1990; Dharia and
Adeli, 2003; Jiang and Adeli, 2004, 2005; Park et al.,
1991; Wu and Adeli, 2001) for its ability to deal with
complex relationships in data sets. Unlike multivariable
models, ANNs can be developed without specifying
the form of the function, whereas the restrictions
on the multicollinearity of the explanatory variables
can be neglected. Chien et al. (2002) provided two
ANN models to predict transit arrival time, which are
trained by link-based and stop-based data. Both of the
models were integrated with an adaptive algorithm
to improve prediction accuracy. Meanwhile, hybrid
models with a combination of Kalman filtering and
neural networks showed good results (Chen et al.,
2004; Chien et al., 2002). Jeong and Rilett (2004) used
a historical data-based model, regression models and
artificial neural network models to predict bus arrival
time and found that ANN models outperformed the
others in terms of prediction accuracy. van Hinsbergen
et al. (2009) combined neural networks in a committee
using Bayesian inference theory. An evidence factor
was used as a stopping criterion during training and as
a tool to select and combine different neural networks.

SVM models are a specific type of learning algo-
rithm characterized by the capacity control of the de-
cision function, the use of the kernel functions and
the sparsity of solutions (Cristianini and Shawe-Taylor,
2000; Vapnik, 2013; Vapnik, 1999). Yu et al. (2006) sug-
gested that SVM model is suitable for bus arrival time
prediction based on historical data of bus arrival. But
Chen et al. (2004) pointed out historical data had dif-
ficulty in handling dynamic traffic conditions owing to
the lack of real-time data. Then Yu et al. (2010) de-
veloped a hybrid model combining a Kalman filtering
method with a SVM model, which takes latest bus ar-
rival information/real-time data into account.

However, neural networks and SVMs are com-
plicated because of the large number of parameters
needed to be adjusted. Additionally, these algorithms
tends to overfit the data (Breiman et al., 1984).
Highlighted interest focuses on the emerging type of
machine learning technique in recent years, such as
random forests, neural network ensembles, bagging and
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boosting, and so on (Ghimire et al., 2010; Gislason
et al., 2006; Sesnie et al., 2008; Steele, 2000). Ensemble
learning algorithms work by running a “base learning
algorithm” multiple times, and forming a vote out of
the resulting hypotheses (Dietterich, 2002). Ensemble
learning technique might have higher accuracy because
the group of classifiers performs better than only one
single classifier.

Random Forest (RF) model is constructed in a ran-
dom vector of the data feature space (Breiman, 2001).
RF models improve the accuracy of regression without
a great increase in computation complexity. Addition-
ally, these models can explain the importance of thou-
sands of variables (Breiman, 2001; Iverson et al., 2008).
RFs are efficient and accurate compared with other ma-
chine learning models; thus, they are widely applied in
different fields (Cutler et al., 2007; Genuer et al., 2010;
Yang et al., 2016). Generally, RFs have shorter calcu-
lation time and the problem of multicollinearity can be
ignored. RF is not sensitive to outliers and remains ro-
bust despite missing data. Meanwhile, RF models can
reduce overfitting (Breiman, 2001; Friedman and Meul-
man, 2003) because of the random selection in features
and training samples.

RF has been applied in transport such as prediction of
traffic flows (Hamner, 2010; Leshem and Ritov, 2007)
and bus travel time prediction (Gal et al., 2015; Mor-
eira, 2008). In Moreira’s work, the travel time predic-
tion is designed for planning purposes of mass transit
companies in a relatively macroscopical aspect. That is,
Moreira gave an application of three machine learning
algorithms including RF, and travel times of whole trips
for transit companies are predicted considering pay day
impact, seasonality of the year, and so on. In general,
Moreira’s work focused on business transit in macro-
scopical aspect, which did not consider characteristics of
buses and bus data, for example, bus dwell time, traffic
conditions. Gal et al. (2015) combined queuing theory
and machine learning to forecast the bus travel time,
with the main concept of predicting travel time based
on queuing theory and identifying outliers of the travel
time by using machine learning. RF is one of the algo-
rithms that was used in Gal’s research for the detec-
tion of outliers in scheduled transportation. Gal et al.
(2015) used the travel time of the preceding 1 bus as an
estimate of the predicted one. Different from these re-
searches, we propose a hybrid model, which combines
RF and near neighbors, to forecast the travel time con-
sidering current traffic conditions both on current seg-
ment and next segments.

Near neighbors method and its extension are also
used in prediction of bus travel time, namely KNN
method. Main property of near neighbor regression is
that the method needs few or no parameters, whose

calibration will cost much time in computing. Chang
et al. (2010) developed a model based on the nearest
neighbor nonparametric regression using historical and
current data from the AVL system. Different from the
conventional nearest neighbors (KNN) method, where
a certain number of samples are selected for prediction,
we apply near neighbor method to calculate a weight
for each sample in the selection of training set. The
near neighbor method used in our article is the linear
search (exact method) and compared with other search
methods (e.g., K-d tree, KNN), linear search is simple
and provides exact results, which can be applied with
the help of cloud and parallel computation for faster
computation.

The prediction of bus arrival time is usually consid-
ered in two ways. First, some researchers simultane-
ously consider bus running time and bus dwell time.
Wall and Dailey (1999) used a combination of both
AVL data and historical data to predict bus arrival
time. A Kalman filter model is used to track vehi-
cle location and predict bus travel time, where dwell
time is not explicitly coped with as an independent
variable. Chien et al. (2002) did not consider dwell
time as input variables in their ANN model. Second,
some researchers consider bus dwell time and running
time separately (Jeong and Rilett, 2004; Shalaby and
Farhan, 2003). In this article, bus running time and
bus dwell time at stops are not separately considered
and are not estimated. However, we combine them as
the travel times of buses between bus stops. The bus
dwell time is taken as a factor of bus travel time in our
model.

In terms of model features, a lot of studies focus on
the relation of bus travel time over the historical data.
Some regression techniques predict the dependent vari-
able by the formulation formed by a set of indepen-
dent variables that affect travel time, which may include
road and traffic conditions, weather, signals, intersec-
tions and driver characteristics (Bo et al., 2010; Pat-
naik et al., 2004). In our method, traffic conditions are
mainly considered in model formulation owing to data
availability of other factors. Compared with other fac-
tors such as weather, road conditions, and driver charac-
teristics, traffic conditions gradually play an important
role in affecting bus travel time, especially in congested
cities.

The purpose of our work is to predict the bus travel
time using the proposed method and analyze the perfor-
mances in different cases, considering the current traffic
conditions as the factors. The predicted travel time can
be provided to travelers to help in decision making and
can be used for bus operations. In addition, AVL sys-
tems and parallel and cooperative computing facilitate
real-time prediction.
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This paper aims to make two contributions. A new
method for the prediction of bus travel time is pro-
posed, that is, random forests based on the near neigh-
bor (RFNN). RFNN involves random forests and the
concept of near neighbor, in which a preselection pro-
cess for training data set is posed to enhance the per-
formance of random forests. Although the computa-
tion time of RFNN is longer, the results of RFNN show
higher accuracies in mean absolute error (MAE), mean
absolute percentage error (MAPE), and root mean
squared error (RMSE). RFNN makes it possible for bus
operators and passengers to seek for more accurate pre-
dictions of bus arrival time. In addition, RFNN suits for
large-scale data sets because of the extraction of simi-
lar samples and discard of unessential data in the entire
data set. Incidentally, random forest is also applied to
predict bus travel time in the manuscript, and the per-
formance of RF is evaluated by the comparison with
other methods. RF is rarely used in the field of predic-
tion of bus travel time, especially in the prediction that
considers traffic conditions as a factor.

The remainder of this article is organized as follows:
Section 2 describes RFs and the proposed RFNN model.
In Section 3, a numerical test with sensitivity analysis
and state-of-the-art comparison are presented. Section
4 concludes the article and provides an outlook on fu-
ture works.

2 METHOD

In this section, the concept of classic RFs is presented,
and the proposed improvement algorithm (Random
Forests based on near neighbors) is described.

2.1 Random forests

RF model is a kind of Classification and Regression
Tree (CART) model and a type of ensemble learn-
ing algorithm. Considering the problem of overfitting,
Breiman (2001) proposed the RF model that combines
the results of multiple trees (forest) without a significant
increase in computation complexity.

In decision tree (DT) learning, the term feature is
commonly used, such as the independent variables in re-
gression models. A feature is defined as the dimensions
of a data set. For example, weather, road length, and
traffic conditions may affect the prediction of bus travel
time, which are also referred to as features in DT learn-
ing. In the procedure of training, each tree is built based
on a random subset of features. For a specific data set, it
has a set of features and one random subset of features
is assigned to each built tree (also referred to as fea-
ture bagging). The reason for this process is the correla-
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Fig. 1. Process of random forests.

tion of the trees. Specifically, if a few features are strong
predictors for the target output, these features will be
selected in many of the built trees, which cause them
to become correlated (Ho, 2002). Typically, a third of
the total number of features selected for each built tree
is recommended. Meanwhile, each tree is trained with
a random subset of the original data (Breiman, 2001).
In the procedure of data selection, bootstrap sampling
is employed, which enables the remaining unused sub-
set to be used for calculating general errors. After the
training (based on Information Gain) of the data set,
RFs model returns the average output of all aggrega-
tions by voting. Different from the single decision tree,
RFs is the combination of multiple decision trees. Each
tree is an expert of classification or regression in a cer-
tain set of features. The final results of RF are obtained
by the voting of all trees in RFs, which are superior to
single classifier models (Liaw and Wiener, 2002).

For example, as depicted in Figure 1, assuming five
features/independent variables (d1, d2, . . . , d5) for each
data, which jointly determine the value of the depen-
dent variable (output), these five features are gener-
ated in a single tree for the regression in CART models.
Nonetheless, RF model generates a forest with multiple
trees where each tree generates with a random subset of
the entire features (D1, D2 . . . ), assuming that each tree
generates with three random features: D1 (d1, d3, d4),
D2 (d2, d3, d5), and D3 (d1, d2, d4). Furthermore, each
tree is trained based on Information Gain, and each tree
majors in certain features (e.g., D1 experts in d1, d3, d4).
That is, the concept of branching in RFs is to set the fea-
ture with the maximum information as the upper split
feature (e.g., the upper gray circle of T1 in Figure 1).
Then the prediction result is obtained according to the
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vote of the forest (T1, T2, T3 stand for three different
trees), where the average value of the outputs from all
trees is commonly used for the final regression result
(see Equation (1)). RF will divide the data set based on
values of each feature and finally there might be sev-
eral data at an end leaf. In regression, each tree outputs
the mean value of those several data at one of the end
leaves, and final prediction results are the mean of each
tree. Note that each tree has the equivalent weight in
voting.

H(x) = 1
T

×
T∑

i=1

hi (x) (1)

where T is the number of trees in the forest and h()
stands for the prediction values of the ith tree.

RFs model requires a limit number of parameters
(two main parameters): the number of trees in the
forest (refer as ntree) and the number of input vari-
ables/features used to generate each tree (refer as mtry).
That is, ntree represents the number of trees in the
forests, whereas mtry represents the same number of
features every tree in the forest contains. The influ-
ence of mtry means the strength of each tree and also
the correlations between trees. A larger value indicates
an increase in strength and correlation (Peters et al.,
2008). The performance of prediction using RFs model
is proved better by increasing the strength and decreas-
ing the correlation, so the value of mtry is twofold (Ließ
et al., 2012).

For regression problems the inventors recommend
D/3 for mtry (D is the number of total features/input
variables) as the default value. The default value of ntree

is 500, which was proven; however, it is not appropri-
ate to obtain stable results (Grimm et al., 2008). Thus,
we set ntree = 1,000 in this article and the value changes
in sensitivity analysis to figure out the best value of
parameters.

2.2 RFs based on near neighbors

The scale of data might be a double-edged sword for ar-
rival time prediction. Few data usually cause a lack of
necessary information and hinder the capture of inner
relations with its features. Nonetheless, the error rate of
the prediction model usually increases in mass training
data because the large scale of data may have many data
that are not strongly relevant to predictions, which may
negatively influence the prediction. To improve the ac-
curacy of the entire prediction process in this article, we
propose a hybridization method of the random forests
model based on the near neighbors method, which im-
poses a process of preselection for the training set in
RFs models. That is, RFNN contains two main proce-

dures, where the first process involves selection of the
training set for the RF model from the original data set,
and the second process involves the training and regres-
sion procedure of RF model.

First, the preselection process of training set for RFs
is based on the concept of “near neighbors,” which
can also be considered as the reorganization of origi-
nal data, that is, the result of the preselection is taken
as the training set of RF models. Training data set is
necessary and essential for machine learning algorithm,
but traffic data of public buses is vast thus contains
many useless or noisy data for a specific prediction of
bus travel time. Therefore, we attempt to identify high-
quality data/samples for a certain prediction, which may
improve the quality of training set and the prediction.
The “high-quality” is measured by the similarity of the
training set and predicted data, and the similarity is
often numerically measured by the distance of the com-
pared ones in aspect of data features. That is, similar-
ity between samples and the reference sample is con-
sidered to be the quality of samples when compared
with the reference sample, where higher similarity in-
dicates higher quality. In bus travel time prediction,
similar conditions of traffic usually lead to similar bus
running conditions (e.g., running speed) and this simi-
larity is captured by the preselection process of train-
ing sets. In other words, if we predict the bus running
time for a specific traffic condition, we might learn a
lot from those similar conditions, which entails the sim-
ilarity and distance between the reference sample (data
to be predicted) and other training samples. The dis-
tance between the reference sample and other samples
are calculated as Equation (2), where the difference will
be assigned a specific weight (see Figure 2) for selec-
tion (selection probability). The result of the selection
(a set of samples) will be further set as the training set
of RFs model. These “near neighbors” mean samples,
which are close to the reference sample (in measure of
distance). A commonly used distance metric for contin-
uous variables is the Euclidean distance, whereas the
Hamming distance or correlation coefficient is common
for discrete variables. The Euclidean distance is chosen
in this article for distance calculation according to the
type of the collected data, as shown in Equation (2).

distance(X0, X1) =
√√√√

|X0|∑
i=1

(X0i − X1i )
2 (2)

where X0 stands for the reference sample (the sample to
be predicted) and X1 represents the sample in the train-
ing set. X1i represents the ith features of sample X1, and
the difference of samples is measured by the similarity
of sample features/dimensions.
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Xk:very similar

Xk+1:not simila r

Xk+2:similar

Other samples

Fig. 2. Selection probability (Roulette) of each sample when
comparing with the reference sample X0. For example, Xk is
a very similar sample compared with X0 thus Xk has a higher
choose probability than that of Xk+1 and Xk+2 in the selection

of training set.

Second, the training samples for the RFs prediction
model, which is a black-box regression process, are se-
lected using the Roulette method, which is based on the
selection probability (the obtained distance in the first
process) of each sample. The training set of RF is se-
lected from the original data set, which is based on a
similarity-related probability. A higher selection prob-
ability is assigned to samples, which are similar to the
data to be predicted (reference sample). Figure 2 shows
the generation of the selection probability of samples.
Results of the selection are the similar samples (simi-
lar traffic conditions) that have higher probability to be
chosen in the training set from the vast sample set. How-
ever, the selected samples are not used for training of
RF model directly. That is, a reselection process (boot-
strap sampling) is used, which allows the remaining un-
used subsets to be used for calculating general errors, as
commonly used in RF models. After the training of data
sets, RFs model returns the average output of aggrega-
tions of trees in the forest.

The procedure of the proposed RFs based on near
neighbors is depicted in Figure 3.

Bus travel time prediction between adjacent bus stops
that considers current traffic conditions can be de-
scribed as follows: bus travel time between bus stops
(including bus running time and bus dwell time at stops)
is assumed to have relations with the average bus dwell
time of the current stop and the current traffic condi-
tions on the predicted route segment and next segments.
In Equation (3), T̂t,k stands for the predicted value of
bus travel time (from the start point of segment k to

1 Set num_data = number of initial dataset 
2 Set num_training = number of training set for RFs 

model 
3 //Initialization 
4
5
6

Normalization of data 
Divide the dataset into num_training for training set 
and num_data-num_training for  test set 

7 //Near neighbors (pre-selection) 
8 For i = 1 to num_training
9 distancei = Euclidean distance between datai and 

the reference/predict sample 
10 selection_probabilityi  = 

(max_distance-distancei)/sum(max_distance-distancei)
11 cumulative_probabilityi = 

cumulative_probabilityi-1+ selection_probabilityi
12 End for 
13 Select num_training samples based on Roulette 

method
14 //Random forests regression 
15 Bootstrap selection for the num_training samples in 

former process 
16 Calibration of parameters (ntree, mtry) in RFs 

model 
17 RFNN_model = machine learning 
18 prediction_result = average(prediction value of 

ntree trees based on RFNN_model) 

Fig. 3. Procedure of the RFs based on near neighbors
(RFNN).

the start point of segment k + 1) on segment k at time
t, and ct,k+1 represents the current traffic conditions on
segment k + 1, which is the downstream segment of seg-
ment k. Two variables are used to measure traffic condi-
tions: the average running speed st,k and the speed vari-
ance vt,k of the segment. T̂t,k is the combination of the
running time on segment k and the dwell time dt,k at
the end of segment k (bus stop dwell time) at time t.
Current traffic conditions on segment k are measured
by the average running speed and the variance of ve-
hicles on segment k (refer to Equation (4)). T̂t,k can be
predicted by the set of variables in Equation (5), which
are input variables in our machine learning algorithm:
RFNN. Estimated values are used to replace the real
values because of the availability of real-time data. For
example, st,k is not available at time t in bus data be-
cause it is rare that a bus sharply finishes the running on
segment k at time t and then the average running speed
on k can be calculated. Therefore, we use the average
running speeds of the preceding buses, which have fin-
ished running on segment k, to approximately replace
the average running speed at time t.

T̂t,k = f (dt,k, ct,k, ct,k+1, . . .) (3)

ct,k = h (st,k, vt,k) (4)

T̂t,k = g (dt,k, st,k, vt,k, st,k+1, vt,k+1 . . .) (5)
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2.3 Model validation

The validation of the RF model can be measured in
three indices: MAE, MAPE, and RMSE. The MAE
measures the average magnitude of the errors in a set
of forecasts, whereas the RMSE measures the average
magnitude of the error. The RMSE gives a relatively
high weight to large errors and is always larger or equal
to the MAE. The greater difference between them, the
greater the variance in the individual errors in the sam-
ple set. MAE and RMSE have the dimensions of pre-
diction and observed values (second), whereas MAPE
is dimensionless (%). The three indices are calculated
for the validation data sets as follows:

MAE = 1
n

×
n∑

i=1

| fi − yi | (6)

MAPE = 1
n

n∑
i=1

| fi − yi |
yi

× 100% (7)

RMSE =
√√√√ 1

n − 1
×

n∑
i=1

( fi − yi )
2 (8)

where fi is the prediction result, yi is the observed value
(real value), and n is the number of samples.

3 NUMERICAL TEST

3.1 Data collection and analysis

The model for bus arrival time prediction has been
tested with the data sets of bus routes 232 and 249 in
Shenyang, which is the capital of Liaoning Province in
China. The two bus routes extend from the suburb to
the center of Shenyang without timetables at each bus
stop. Bus route 232 has 19 bus stops and the total dis-
tance extends 10.7 km. Meanwhile, the total travel time
from origin to destination is approximately 60 minutes,
with the bus frequency of 2.5 minutes. Bus route 249
has a length of about 15 km with the bus frequency of
about 7 minutes and 27 bus stops. In aspect of bus run-
ning speeds, bus routes 232 and 249 have the average
running speed of 15.6 km/hour and 14.9 km/hour, re-
spectively, which indicates similar traffic conditions on
the two bus routes. Seventeen out of the 18 route seg-
ments (divided by the bus stops) are set as time points
for arrival time prediction in Figure 3. Similarly, 25 of
the 26 route segments are set as the time points for bus
arrival time prediction. Because the proposed method
predicts bus travel times based on the running condi-
tions on the next segment, the last segment of each bus
route is removed from the prediction. The data set is

collected on 23/02/2016–25/02/2016 (06:30–19:30) with
15,743 original data of bus arrivals for bus route 232
and 8,257 data for route 249 from the automotive ve-
hicle location (AVL) system. Data of bus arrivals and
departures at bus stops are obtained after map match-
ing and cleaning of abnormal data. The remainder of the
data set (14,182 data for bus route 232 and 7,623 for bus
route 249) is divided into two subsets: 80% for training
and 20% for testing. Table 1 lists the descriptive statis-
tics of the data set and Figure 4 depicts the direction of
bus routes 232 and 249, where only one direction of bus
routes is selected for the case.

As depicted in Figure 5, Bus a is the bus that re-
quired predictions, whereas Bus b, . . . , e are the pre-
ceding buses of Bus a. The prediction process enables
us to figure out the travel time (including running time
and dwell time) of Bus a on Segment 1. We can obtain
the running information (average speed and speed vari-
ance) of buses from the AVL systems, both on Segment
1 and Segment 2. The running information is updated
when the preceding buses leave a stop. That is, the traf-
fic conditions of Segment 1 are updated and measured
with the arrival data of Bus c, which finishes travel be-
tween bus stops and just leaves for the next stop. Con-
sidering Figure 5 as an example, the bus running infor-
mation is updated at time t. Arrival information of Bus
c is the latest information that reflects the current traffic
conditions However, the running information of Buses
d and e can also be used to measure the traffic conditions
on Segment 1. Because Bus c has a distance with Bus d,
the main difference between the running information of
the two buses is the information loss of current traffic
during the “distance.” In practice, a shorter interval of
data updating will result in a better estimation of cur-
rent traffic conditions and it is set as a 1-minute inter-
val for updating input data considering practical appli-
cation. As shown in Figure 5, we consider Bus c and Bus
d as the preceding two buses of Bus a because Bus b
has not finished travel on Segment 1. Meanwhile, Bus
e is regarded as the preceding bus of Bus a on the next
(downstream) segment.

3.2 Results

Generally there are two main parameters while us-
ing RFs: mtry and ntree. However, the best values of
mtry and ntree for our prediction problem are unknown.
Thus a searching of the parameter values should be con-
ducted first, which aims to identify suitable value of pa-
rameters (mtry and ntree) to predict unknown data accu-
rately. We set the value of the two parameters to 1,000
(as previously mentioned) and D/3 (default value), re-
spectively. In the next section, we discuss the sensitivity
of the results when parameters’ values change.
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Table 1
Descriptive statistics for the collected data: route segment number, DataSize, road length, min, max, mean, and standard

deviation of bus running time on each route segment. Left: 232; right: 249

DataSize Length [m] Min [s] Max [s] Mean [s] SD [s]

Seg 232 249 232 249 232 249 232 249 232 249 232 249

1 861 310 596 320 59 89 153 142 85 117 13.28 10.87
2 769 290 703 900 101 90 271 245 143 187 22.43 28.40
3 858 309 350 488 47 87 137 149 68 116 10.98 17.41
4 851 298 980 458 107 59 250 170 177 115 31.84 19.45
5 874 296 1,000 740 163 200 657 452 306 325 78.48 45.32
6 787 310 270 517 44 100 127 243 66 174 9.82 28.90
7 894 304 605 922 96 168 283 321 135 232 21.48 30.69
8 797 306 615 615 75 115 174 228 106 157 20.22 27.92
9 794 311 670 555 162 152 514 332 282 260 61.81 36.57

10 866 324 500 1,100 107 190 304 570 164 299 21.93 84.47
11 816 288 520 607 85 145 217 347 128 239 19.91 44.05
12 858 304 1,000 385 159 73 395 147 237 106 43.55 22.49
13 862 314 485 470 84 127 211 252 124 204 21.18 59.60
14 824 324 353 285 129 124 293 256 189 185 31.27 59.53
15 870 298 322 680 77 119 172 302 107 222 13.75 37.76
16 794 302 845 740 139 134 423 267 217 200 57.86 25.51
17 807 326 510 728 89 121 220 475 119 200 15.91 54.65
18 322 399 104 387 236 67.35
19 283 680 135 293 221 52.36
20 285 228 73 204 143 36.25
21 307 920 180 332 224 45.09
22 322 445 42 120 75 31.10
23 280 357 52 208 95 30.06
24 316 650 67 136 98 24.33
25 294 760 126 290 201 35.27

The candidate input variables in the model could be
divided into three aspects: average bus dwell time at the
stop, the running information/conditions of the buses on
the current route segment and the next (downstream)
route segment. In other words, the condition (e.g., av-
erage speed and speed variance) of the current route
segment reflects the current traffic conditions (e.g., con-
gestions) and specific route segment conditions (e.g.,
condition of poor road pavements). For instance, one
route segment with a poor pavement condition usually
has slower speeds for buses. Furthermore, the condition
of the next route segment could also affect the running
buses on the current segment. That is, congestions on
the next route segment could play a negative role in
the interference on the current route segments because
of traffic waves. Therefore, the traffic conditions of the
current segment and only one downstream (the next)
segment are selected in the case study. Traffic condi-
tions are measured by the average running speed and
the variance of average speeds, which are collected from
the data of preceding buses in the AVL system. In ad-
dition, the bus dwell time at stop k is calculated and set

as the average value of dwell time at stop k in the time
interval of one hour. Although bus dwell time can be es-
timated with APC data, we use average values for our
predictions owing to the lack of APC data. Specific in-
put variables are listed in Table 2.

In Table 2, BDT stands for the average bus dwell time
at the bus stop in an hour. To illustrate relative magni-
tudes of bus dwell time at different stops, bus dwell time
is measured in proportion. That is, an index of bus dwell
time at a stop is employed to represent the proportion
of dwell time at a bus stop against the total dwell time
of stops. It is easy to understand and calculated as

IBDT = 1
M

∑
m∈M

BDTms∑
s∈S BDTms

(9)

where IBDT represents the index of bus dwell time at a
bus stop, M is the set of buses, and BDTms stands for the
bus dwell time of bus m at stop s. Figure 6 illustrates the
average bus dwell time at stops among the two routes.
Compared with bus route 249, route 232 has much more
stops that have longer bus dwell time than the average
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Fig. 4. Bus routes 232 and 249. Left for bus route 232; right: 249. The direction of the bus routes discussed in this article is from
the top to the bottom.

Segment 1 
(current segment)

Segment 2 
(next segment)

Bus a Bus d

Next segment 
condition

Current segment 
condition

Bus eBus b Bus c

Bus
stop

Bus
stop

Bus
stop

Fig. 5. Explanation of bus arrival time prediction process at time t.

values, which indicates larger passenger flows at these
bus stops.

SC2 indicates speed current 2buses, that is, the aver-
age of the average running speed of the preceding two
buses on the current segment, whereas VC2 represents
the speed variance of the two buses on the current
segment and SN1 denotes speed next 1bus on the next

segment. All these parameters are set as the input
variables in the basic scenario (S0). The bus travel
time is tested on the test data set (20% of the whole
data) 10 times, and each time of prediction will output
different values owing to the preselection based on near
neighbors and bootstrap selection of training set in RF.
In Figures 7 and 8, three lines are depicted to represent
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Table 2
Input variables

Input variable Symbol

Bus dwell time at stop BDT
Running condition of

the buses on the
current route
segment

Preceding 1
bus

Average
speed

SC1

Preceding 2
buses

Average
speed

SC2

Speed
variance

VC2

Preceding 3
buses

Average
speed

SC3

Speed
variance

VC3

Running condition of
the buses on the
next route segment

Preceding 1
bus

Average
speed

SN1

Preceding 2
buses

Average
speed

SN2

Preceding 3
buses

Speed
variance

VN2

Average
speed

SN3

Speed
variance

VN3

Fig. 6. Index of bus dwell time at segments.

the absolute deviations of 50 seconds. From the figures,
it can be found that RFNN performs well because most
prediction has an absolute deviation smaller than 50
seconds in Figure 7. As shown in Figure 8, the results
show larger deviations of the prediction for bus route
249 than the deviations of the prediction for bus route
232. Many predictions of RFNN provide considerably
accurate results because of the proper detection of
similar traffic conditions. Note that in RFNN method,
similarity is primarily measured by traffic conditions on
segments; traffic conditions on a certain segment are
assumed to be similar with the traffic conditions on
other segments. That is, the similar samples in our pre-

Fig. 7. Prediction results of S0 compared with the observed
data of bus route 232. One hundred observed samples are

randomly selected from the test data set and each observed
sample is predicted by RFNN for 10 times.

Fig. 8. Prediction results of S0 compared with the observed
data of bus route 249. One hundred observed samples are

randomly selected from the test data set and each observed
sample is predicted by RFNN for 10 times.

selection process are selected from the data of not only
a specific segment, but also other segments with similar
traffic conditions. This assumption is motivated by the
fact that similar traffic conditions on different segments
usually lead to similar running conditions (e.g., running
speed) and the quality of detecting the right current
traffic conditions directly affects prediction perfor-
mance. Figure 8 shows weaker identification of current
traffic conditions as a result of longer bus frequencies
and longer data updating owing to fewer buses, which is
employed for estimating current traffic conditions. The
results also imply that a significant amount of data will
support the identification of similar conditions (data set
of route 232 is almost twice the size of the data set of
route 249).

In this case, the frequency of bus routes 232 and 249
is 2.5 minutes and 7 minutes, respectively. Assuming
that the condition/information of the preceding buses
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Table 3
Results of the 10 scenarios with 10 runs. Left for bus route 232 and right for 249

MAE [s] MAPE [%] RMSE [s]

Scenario Description Input variable 232 249 232 249 232 249

S0 Using all input
variables: average
speed and speed
variance of the
preceding 1, 2, and 3
buses on the current
segment and the next
segment

All 13.65 13.79 6.90 7.60 26.37 29.04

S11 Using the average speed
and speed variance of
the preceding 1 bus
on the current
segment and that of
the preceding 1 bus
on the next segment

BDT,SC1,SN1 15.24 15.06 7.85 8.63 30.96 30.70

S12 Current segment: 1 bus;
next segment: 2 buses

BDT,SC1,SN2,
VN2

15.06 14.50 7.69 8.15 32.23 30.68

S13 Current segment: 1 bus;
next segment: 3 buses

BDT,SC1,SN3,
VN3

15.48 14.13 7.85 7.91 32.66 29.49

S21 Current segment: 2
buses; next segment: 1
bus

BDT,SC2,VC2,
SN1

19.28 17.93 10.90 11.21 38.77 36.44

S22 Current segment: 2
buses; next segment: 2
buses

BDT,SC2,VC2,SN2,
VN2

17.73 17.19 10.10 10.88 37.00 35.82

S23 Current segment: 2
buses; next segment: 3
buses

BDT,SC2,VC2,SN3,
VN3

17.77 17.39 10.16 10.90 33.37 32.24

S31 Current segment: 3
buses; next segment: 1
bus

BDT,SC3,VC3,
SN1

22.65 22.01 13.41 14.29 44.27 42.86

S32 Current segment: 3
buses; next segment: 2
buses

BDT,SC3,VC3,SN2,
VN2

21.07 20.67 12.51 13.33 39.32 38.09

S33 Current segment: 3
buses; next segment: 3
buses

BDT,SC3,VC3,SN3,
VN3

21.30 20.49 12.71 13.26 38.11 36.33

reflects the condition of traffic, we use nine additional
scenarios to obtain information (average speed and
speed variance) about how many preceding buses could
obtain a better prediction accuracy. It seems that the
preceding one bus usually has a stronger relation with
the current bus (need to be predicted), whereas the
average running time of the preceding two buses or
three buses has a weaker relation due to a long time
interval (refer to the bus frequency/headway) between
adjacent buses, which may result in a low-accuracy
estimation of the current traffic conditions. From
Table 3, the results of bus route 249 with frequency

of 7 minutes show a significant distinct trend in which
a longer headway (lower frequency) between adjacent
buses tends to yield lower accuracy compared with the
results of bus route 232. The loss in accuracy is at-
tributed to the data collection and updating method
in our article. That is, the interval of the data update
and bus headway (frequency) have a combined influ-
ence on data availability. A longer headway results in
fewer buses on the entire bus route and has a smaller
number of bus arrival information during a determined
time range, which contributes to a lack of reflection of
current traffic conditions. Meanwhile, the availability of
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m + 1). Furthermore, headway is calculated by the gap

between the departure times of two sequential buses at stops.

real-time data caused by the interval of the data update
is distinct.

Nonetheless, if the running information of the pre-
ceding one bus is emphasized, we may get a low-
accuracy estimation when unexpected events act on the
preceding one bus (e.g., car accidents). What about
the average running conditions of the preceding 2 or 3
buses? Therefore, 10 scenarios (with one basic scenario
S0) are set to describe the cases in which the running
conditions of different numbers of preceding buses are
employed. The input variables and results of the 10 sce-
narios with 20 runs are listed in Table 3. In Table 3,
S0 is the basic scenario, and all input variables listed
in Table 2 are applied into the RFNN model, whereas
other variables are different scenarios with diverse in-
put variables. For example, S23 indicates that the input
variables are (1) the average bus dwell time at stop on
the current segment, (2) the average running conditions
of the preceding two buses on the current segment, and
(3) the average conditions of the preceding three buses
on the next segment in RFNN model. The input vari-
ables can also be described as average bus dwell time
(BDT), the average running speed of the preceding two
buses (SC2) and the speed variances (VC2) on the cur-
rent segment; the average running speeds of the preced-
ing three buses (SN3) and the speed variances (VN3) on
the next segment.

To evaluate the performance of the proposed method
when addressing bus bunching, which indicates large
gaps in headway, we detect and choose a real case from
bus route 249. A bus bunching occurs between segment
18 and segment 25, especially for bus m + 1 and m + 2 in
Figure 9. Serious bus bunching occurs between bus m +
1 and m + 2, whereas bus m + 3 weakens this deteriora-
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Fig. 10. Observed travel time and predicted error of segment
18–25 for bus m + 2. The prediction of RFNN is conducted
for 10 times and the average of predicted values are used to

calculate errors.

tion. Therefore, the data of bus m + 2 is removed from
the training set and added into the testing data set to
test the performance of RFNN when facing up with bus
bunching.

The results of bus m + 2 are depicted in Figure 10,
where the predicted values of bus m + 2 from segment
18 to 25 exceed the observed values. The reason for
these positive errors is the short headway between bus
m + 1 and bus m + 2, in which generates fewer waiting
passengers and shorter bus dwell times. However, the
short headway (bus bunching) will prevent the real-time
data updating for the predicted bus (bus m + 2). That is,
the real-time data of bus m + 1 is not updated in time
because it might not finish the running on the current
segment. Therefore, the values of input variables for bus
m + 2 are also not updated and the predicted values are
larger than the observed values, which underestimates
the changes in the number of waiting passengers owing
to shorter headway, especially for the bus stops with a
larger variety in waiting passengers.

Traffic congestions usually cause larger variances of
bus travel time. Accuracy of the prediction method in
the condition of traffic congestion is essential to eval-
uate the performance. Figure 11 illustrates the perfor-
mance of RFNN for the prediction of buses during
morning peak hours on route 232. The four bus stops
(segments) with largest average bus dwell times on bus
route 232 are depicted, that is segments 5, 10, 11, and
16. Segments 11 and 16 of bus route 232 have larger
prediction errors (with the MAPEs of 8% – 9%). Traf-
fic conditions (e.g., congestions) contribute to the larger
error rates partly, which can be also found in segments
5 and 10 (with MAPEs about 7.5 %). Another reason
for the higher error rates of segments 11 and 16 than
segments 5 and 10 is the similarity between segments
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Fig. 11. Observed travel time and predicted error of segments 5, 10, 11, and 16 (four segments with the longest bus dwell times)
for bus route 232. The prediction of RFNN is conducted for 10 times and the average of predicted values are used to calculate

absolute errors. Five data of each segment are extracted from the testing data set.

11 and 16. Segments 11 and 16 have similar dwell times
(mentioned in Figure 6) at stops, and the running speeds
of buses during congestions are similar for all buses. The
two reasons lead to a negative effect on the detection
and selection of similar samples in RFNN. However,
the results also indicate that RFNN has an acceptable
prediction accuracy during peak hours at bus stops with
large dwell times.

From the results in Table 3, we find that the accu-
racy of bus route 249 (MAPE) is lower than the accu-
racy of bus route 232 in all scenarios, which is result-
ing from the higher frequency of bus route 249 and the
weaker reflection of the current traffic conditions due to
the data updating method in this article. Although cer-
tain MAE and RMSE of route 249 are smaller than the
MAE and RMSE of 232, note that the MAE and RMSE
is usually related to the characteristics of the data. In
these two cases, bus route 249 has more segments with a
lower travel time in each segment, which causes smaller
MAE and RMSE. The best performance of RFNN ap-
pears when all input variables are selected in the model
training, which implies the strength of RF in discover-
ing inner relations among many factors/features. More-
over, the prediction results of {S11, S12, S13} are better
than the prediction results of {S21, S22, S23}, whereas
{S21, S22, S23} is better than {S31, S32, S33}. This trend
implies that less average running information on cur-
rent segments are of significance for MAE, MAPE, and

RMSE because traffic conditions change rapidly and an
average of several preceding buses will weaken the re-
flection and evaluation of current traffic conditions. The
running condition of the preceding one bus on current
segments could reflect the traffic conditions better com-
pared with the average conditions of two or three buses,
at least in these two cases. The problem is the informa-
tion delay (see Section 3.1, Data collection and anal-
ysis), which will result in a worse reflection of traffic
conditions. Therefore, scenarios of one bus on the cur-
rent segment show better performance owing to its up-
to-date reflection of traffic conditions, whereas average
of two or three buses on current segment weakens the
effect of current traffic conditions. Nevertheless, fewer
buses on current segments might not always perform
well in all cases. For example, if the preceding one bus
breaks down during bus operation, the current traffic
conditions cannot be implied by this bus, and the aver-
age of the preceding two or more buses will weaken the
negative effects of the breakdown.

In terms of the running conditions on next segments,
there seems a trend that more buses on next segments
could enhance the accuracy of predictions. For exam-
ple, the trend in {S31, S32, S33}, implies that in this case,
the average running conditions of more preceding buses
shows the common traffic conditions of the next seg-
ment, which probably have a long-term interference on
the buses that run on the current segment.
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Table 4
Prediction results against different ntree and mtry with 10 runs.

Left for bus route 232 and right for bus route 249

MAE [s] MAPE [%] RMSE [s]

ntree mtry 232 249 232 249 232 249

500 1 19.58 19.05 10.53 11.33 35.29 33.85
500 2 17.12 16.12 9.08 9.45 31.87 29.74
500 3 15.73 14.59 8.07 8.27 30.07 27.81
500 4 15.44 14.41 7.59 7.88 29.68 27.00

1,000 1 19.54 18.37 10.63 10.90 35.10 33.15
1,000 2 16.59 15.61 8.90 9.31 31.22 29.24
1,000 3 15.34 14.68 7.93 8.41 29.49 27.68
1,000 4 13.65 13.79 6.90 7.60 26.37 29.04
1,500 1 19.62 18.32 10.54 10.94 35.42 32.80
1,500 2 15.97 15.42 8.65 9.25 30.48 29.04
1,500 3 15.40 14.36 7.95 8.26 29.43 27.17
1,500 4 15.27 14.35 7.58 7.82 28.67 26.98

The performance of S0 is better than most of the
scenarios with acceptable accuracy (MAE, MAPE, and
RMSE). Therefore, if the interrelations among input
variables are unknown, the use of all these variables
in RFNN is sometimes reasonable. Actually, RFNN
and RF models generate a forest with many trees, and
each tree performs well (experts) in certain features
(input variables). The results of RF models consider
all of these trees and their own skilled features. Thus,
the results of using all input variables without variables
screening can be accepted as good quality of results.

In summary, the results for bus routes 232 and 249
have a similar trend in aspect of the input variables
and prediction accuracy. Because the traffic conditions
of the two bus routes are similar because the average
running speeds of buses on the routes have a small dif-
ference (0.7 km/h), the main difference of the predic-
tion accuracy between these two bus routes is caused
by the availability of real-time data resulting from di-
verse headways (bus frequencies). MAPE of bus route
249 tends to be higher than the MAPE of route 232 in
most scenarios because of the lack of real-time traffic in-
formation. RFNN seems to show a better performance
in accuracy when the current traffic conditions are up-
dated with new running data of buses.

3.3 Sensitivity analysis

We perform a sensitivity analysis of the two main pa-
rameters (ntree and mtry) in RF and RFNN models,
which, as mentioned earlier, may have a significant ef-
fect on the performance of RFNN. In the basic scenario
S0, ntree and mtry are set to 1,000 and 4, respectively. In
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Fig. 12. MAE, MAPE, and RMSE of prediction results of
bus route 232 against ntree and mtry

this section, we attempt to evaluate the interference of
the parameters on the accuracy of the prediction.

The results show that a high value of mtry leads
to better performance of RFNN especially for MAPE
(see Table 4 and Figure 12), because mtry deter-
mines the strength of each individual tree and a
large mtry increases this strength (Peters et al., 2008).
The best results of MAPE and MAE are obtained
when ntree = 1,000 and mtry = 4, where mtry = 4 ≈ D/3
(default value). Furthermore, the value of ntree seems to
have a weak interference on the prediction results, with
the largest deviation of 1.78 seconds, 0.69%, and 3.32
seconds on MAE, MAPE, and RMSE, respectively, for
bus routes 232 and 249. The smallest value of RMSE of
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Table 5
Results of travel time prediction of five methods. Left for bus route 232, right for 249. Computation is conducted on the computer

with dual-core 3.2 GHz processor and 4 GB RAM, and the computation time of RF and RFNN is collected for one time
computation. Indeed, the two methods are computed 10 times

MAE [s] MAPE [%] RMSE [s] Computation time [s]

Method 232 249 232 249 232 249 232 249

LR 31.30 31.61 16.41 18.05 46.77 44.93 104 42
KNN 32.66 31.35 17.33 17.77 48.47 45.24 25,216 3,715
SVM 21.09 21.28 11.16 12.37 31.24 30.33 7,112 2,405
RF 16.13 16.41 8.24 8.76 30.61 30.35 1,241 634
RFNN 13.65 13.77 6.90 7.58 26.37 29.01 44,301 6,286

Fig. 13. Prediction results of S0 compared with the observed data. Two hundred observed samples are randomly selected from
the test data set and each observed sample is predicted by RFNN and RF for 10 times.

bus route 249 occurs in ntree = 1,500, but in general, the
setting of parameters in S0 performs well. The results
also imply that parameter calibration is necessary for
better performance of the prediction in each case.

3.4 Comparison

The results of RFNN are compared in this section
with other four main methods: Linear regression (LR);
KNN; SVM; and classic random forest (RF). The re-
sults are listed in Table 5. These four methods have
their strengths in prediction. LR is a classic and preva-

lent method for prediction due to its ability of analysis.
KNN is a well-known nonparameter regression method
that does not require the calibration of parameters.
In machine learning methods, SVM has been proven
to achieve higher accuracy of regression, especially for
small-scale of data. Furthermore, the proposed RFNN
is also compared with these typical methods, as well as
RF method.

For a fair comparison among different methods, the
training set and test set are randomly selected from the
original data set but are set the same for the five meth-
ods. In addition, the results of RF and RFNN change
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in each prediction because of the randomness in select-
ing training sets. Thus, both methods are computed 10
times to evaluate their performance. As shown in the ta-
ble, RFNN has the highest accuracy, whereas LR model
performs worst probably because of the interrelations
of the input variables. The input variables (independent
variables) in LR are set the same as RFNN and other
methods, which indicates that all input variables in
Table 2 are employed without considering the problem
of interrelations among the independent variables. All
input variables are selected because the selection of
proper input variables or independent variables for
different cases every time is complicated. The perfor-
mance of each method in obtaining the inner relations
among a number of input variables for high-quality
prediction can be evaluated from this setting. Other
methods are also set to use all variables in Table 2 for
fair comparison in accuracy and computation time. The
parameter k in KNN model in this article varies from 1
to 4 and is finally set to 3 according to the comparison
of accuracy. When k = 1 or 2, the accuracy (MAE,
MAPE, and RMSE) of KNN is worse than the accuracy
when k = 3. Therefore, we adopt the best results
(k = 3) for the further comparison with other methods.
The computation time of KNN is considerable so that
values of k are not larger than four. The values of main
parameters in SVM are obtained using a 10-fold cross
validation (McLachlan et al., 2005) and a grid search,
where the main parameters are set to c = 25, ε = 0.2
using the core function of epsilon-SVR for regression.

For a fair comparison with RFNN, RF model is estab-
lished with the same parameter values as RFNN, that
is, ntree = 1, 000, mtry = 4. RFNN has better prediction
results than classic RF model owing to the preselection
process in RFNN because their values of parameters
and input variables are equivalent. The preselection
based on near neighbors method for the training set has
a positive effect on the prediction accuracy. As shown
in Figure 13, RFNN performs better in larger scale
of data set (bus route 232) because more data could
provide more similar samples for strengthening the
process of preselection. For bus route 249, the better
performance of RFNN is not clear (similar RMSE with
RF) in the figure due to the lack of enough similar and
helpful data. However, the preselection in RFNN also
supports for the accuracy in MAE and MAPE.

In terms of CPU time, LR has the shortest run-
ning time, whereas the computation time of RFNN and
KNN model is significantly longer owing to the time-
consuming process of measuring distance/similarity in
these two methods. The other two black-box methods
(RF and SVM) have respectively shorter times than
KNN and RFNN. Although RFNN needs a high occu-
pation of CPU time, higher accuracy is possible. With

the help of parallel computing and cloud computing,
RFNN model can be applied to the real-time predic-
tion of bus travel or arrival time based on the AVL sys-
tem. Although LR model is direct and can be analyzed
compared with black-box methods, the accuracy of LR
is limited by the selection of independent variables in
the model, and the inner relations between indepen-
dent variables cannot be neglected. In contrary, RFNN
model can handle cases with a larger number of input
variables. With the development of ITS and ATIS sys-
tems, additional types of data and influence factors can
be collected for bus travel time prediction, and machine
learning methods (e.g., RF, RFNN) could also perform
well with vast potential factors and provide high-quality
predictions.

4 CONCLUSIONS

This article focuses on the prediction of bus travel
time because it is vital to helping passengers decide
departure times to bus stops and reducing anxiety of
waiting passengers. RF model has a good performance
in nonlinear regression and experts in coping with
high-dimension variables or data. Few studies discuss
the application of RFs in the prediction of bus travel
time. Therefore, we propose a RF-based method that
combines RF and near neighbors method. A prese-
lection process of training set is conducted to extract
similar samples from the entire data set, which can
reduce computation time and eliminate negative effects
of noisy and useless data, especially for a large-scale
data set. Running data of buses, which contains location
and time, on bus routes 232 and 249 in Shenyang are
collected and extracted from the GPS data of buses.
Then, the bus travel time (running time and dwell time)
between adjacent bus stops is calculated based on these
data and subsequently employed for model training in
the proposed RFNN. The information about bus travel
time is applied to measure current traffic conditions
for the consideration of data availability and privacy.
We consider the traffic conditions of both the current
segment and the next segment as the input variables
of the RFNN model. In a numerical test, we analyze
the influence of the main parameters in RFNN and
the effectiveness of the current traffic condition. To
be specific, we discuss how many buses’ running infor-
mation can better reflect the current traffic conditions
and improve the prediction accuracy. It seems that this
number changes in different cases because of bus fre-
quency, generally, availability of real-time data. Finally,
we compare the RFNN method with four typical meth-
ods in bus travel time prediction. The results show that
RFNN has a better performance in accuracy but not
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computation time. With the help of parallel computing
technology and better performance of computers, the
long computation time does not pose a problem consid-
ering the high accuracy in prediction. More transit data
can be collected from various equipment nowadays,
and machine learning methods (including black-box
methods) might be more proper to detect the relations
between vast factors and bus travel time than conven-
tional methods, although the analysis of these relations
is not always feasible. The method proposed in the ar-
ticle can be applied to the prediction of bus travel time
and can be easily extended to estimate bus arrival time
at each bus stop based on current traffic conditions.

Our method can also be supported by APC data to
enhance the estimation of bus dwell time at bus stops.
Combined with the technology of parallel computing
and cloud computing, reducing computation time to a
low level and providing real-time prediction by setting
a shorter interval of data updating is possible. In this
article, only bus running data are employed for predic-
tion. Further study will consider factors such as weather
and numbers of waiting passengers. The average value
of running speed can be changed to a weighted average
speed where closer buses have larger weights.

ACKNOWLEDGMENTS

This research was supported in Natural Science Foun-
dation of China 71571026 and 51578112, Liaoning Ex-
cellent Talents in University LR2015008 and the Fun-
damental Research Funds for the Central Universities
(YWF-16-BJ-J-40 and DUT16YQ104).

REFERENCES

Adeli, H. (2001), Neural networks in civil engineering: 1989–
2000, Computer-Aided Civil and Infrastructure Engineering,
16(2), 126–42.

Adeli, H. & Hung, S.-L. (1994), Machine Learning: Neural
Networks, Genetic Algorithms, and Fuzzy Systems, John
Wiley & Sons, Inc., New York, NY.

Adeli, H. & Yeh, C. (1990), Neural network learning in en-
gineering design, in Paper presented at the Proceedings of
the International Neural Network Conference, Paris, France.
Vol. 1, 412–15.

Al-Deek, H., D’Angelo, M. P. & Wang, M. (1998), Travel time
prediction with non-linear time series, in Paper presented at
the Fifth International Conference on Applications of Ad-
vanced Technologies in Transportation Engineering, New-
port Beach, CA, 317–42.

Ben-Akiva, M. E. & Lerman, S. R. (1985), Discrete Choice
Analysis: Theory and Application to Travel Demand, vol. 9,
MIT Press, Cambridge, MA.

Bo, Y., Jing, L., Bin, Y. & Zhongzhen, Y. (2010), An adaptive
bus arrival time prediction model, Journal of the Eastern
Asia Society for Transportation Studies, 8, 1126–36.

Breiman, L. (2001), Random forests, Machine Learning, 45(1),
5–32.

Breiman, L. I., Friedman, J. H., Olshen, R. A. & Stone, C. J.
(1984), Classification and regression trees (CART), Lecture
Notes in Computer Science, 40(3), 17–23.

Chan, K., Lam, W. & Tam, M. (2009), Real-time estimation
of arterial travel times with spatial travel time covariance
relationships, Transportation Research Record: Journal of
the Transportation Research Board, 2121, 102–109.

Chang, H., Park, D., Lee, S., Lee, H. & Baek, S. (2010), Dy-
namic multi-interval bus travel time prediction using bus
transit data, Transportmetrica, 6(1), 19–38.

Chen, M., Liu, X., Xia, J. & Chien, S. I. (2004), A dy-
namic bus-arrival time prediction model based on APC
data, Computer-Aided Civil and Infrastructure Engineering,
19(5), 364–76.

Chien, S. I.-J., Ding, Y. & Wei, C. (2002), Dynamic bus arrival
time prediction with artificial neural networks, Journal of
Transportation Engineering, 128(5), 429–38.

Chien, S. I.-J. & Kuchipudi, C. M. (2003), Dynamic travel
time prediction with real-time and historic data, Journal of
Transportation Engineering, 129(6), 608–16.

Cristianini, N. & Shawe-Taylor, J. (2000), An Introduction to
Support Vector Machines and Other Kernel-Based Learning
Methods, Cambridge University Press, Cambridge, United
Kingdom.

Cutler, D. R., Edwards Jr., T. C., Beard, K. H., Cutler, A.,
Hess, K. T., Gibson, J. & Lawler, J. J. (2007), Random
forests for classification in ecology, Ecology, 88(11), 2783–
92.

Dharia, A. & Adeli, H. (2003), Neural network model for
rapid forecasting of freeway link travel time, Engineering
Applications of Artificial Intelligence, 16(7), 607–13.

Dietterich, T. G. (2002), Ensemble learning, The Handbook
of Brain Theory and Neural Networks, 2, 110–25.

Friedman, J. H. & Meulman, J. J. (2003), Multiple additive
regression trees with application in epidemiology, Statistics
in Medicine, 22(9), 1365–81.

Gal, A., Mandelbaum, A., Schnitzler, F., Senderovich, A. &
Weidlich, M. (2015), Traveling time prediction in scheduled
transportation with journey segments, Information Systems,
64(C), 266–80.

Genuer, R., Poggi, J.-M. & Tuleau-Malot, C. (2010), Variable
selection using random forests, Pattern Recognition Letters,
31(14), 2225–36.

Ghimire, B., Rogan, J. & Miller, J. (2010), Contextual
land-cover classification: incorporating spatial dependence
in land-cover classification models using random forests
and the Getis statistic, Remote Sensing Letters, 1(1), 45–
54.

Gislason, P. O., Benediktsson, J. A. & Sveinsson, J. R. (2006),
Random forests for land cover classification, Pattern Recog-
nition Letters, 27(4), 294–300.

Grimm, R., Behrens, T., Märker, M. & Elsenbeer, H.
(2008), Soil organic carbon concentrations and stocks on
Barro Colorado Island—digital soil mapping using Random
Forests analysis, Geoderma, 146(1), 102–13.

Hamner, B. (2010), Predicting travel times with context-
dependent random forests by modeling local and aggregate
traffic flow, in Paper presented at the 2010 IEEE Interna-
tional Conference on Data Mining Workshops (ICDMW),
Sydney, NSW, Australia.

Ho, T. K. (2002), A data complexity analysis of comparative
advantages of decision forest constructors, Pattern Analysis
& Applications, 5(2), 102–12.



18 Yu, Wang, Shan & Yao

Iverson, L. R., Prasad, A. M., Matthews, S. N. & Peters, M.
(2008), Estimating potential habitat for 134 eastern US
tree species under six climate scenarios, Forest Ecology and
Management, 254(3), 390–406.

Jeong, R. & Rilett, L. R. (2004), Bus arrival time prediction us-
ing artificial neural network model, in Proceedings of the 7th
International IEEE Conference on Intelligent Transporta-
tion Systems, Washington DC, 988–93.

Jeong, R. H. (2005), The prediction of bus arrival time using
automatic vehicle location systems data, Texas A&M Uni-
versity, College Station, TX.

Jiang, X. & Adeli, H. (2004), Clustering-neural network mod-
els for freeway work zone capacity estimation, International
Journal of Neural Systems, 14(03), 147–63.

Jiang, X. & Adeli, H. (2005), Dynamic wavelet neural network
model for traffic flow forecasting, Journal of Transportation
Engineering, 131(10), 771–79.

Kalman, R. E. (1960), A new approach to linear filtering and
prediction problems, Journal of Basic Engineering, 82(1),
35–45.

Leshem, G. & Ritov, Y. (2007), Traffic flow prediction us-
ing Adaboost algorithm with random forests as a weak
learner, International Journal of Mathematical, Computa-
tional, Physical, Electrical and Computer Engineering, 1(1),
1–6.

Liaw, A. & Wiener, M. (2002), Classification and regression
by Random Forest, R News, 2(3), 18–22.

Ließ, M., Glaser, B. & Huwe, B. (2012), Uncertainty in the
spatial prediction of soil texture: comparison of regression
tree and random forest models, Geoderma, 170, 70–79.

McLachlan, G., Do, K.-A. & Ambroise, C. (2005), Analyzing
Microarray Gene Expression Data, vol. 422, John Wiley &
Sons, Hoboken, NJ.

Moreira, J. P. C. L. M. (2008), Travel time prediction for
the planning of mass transit companies: a machine learn-
ing approach, Universidade do Porto, Porto, Portuguese
Republic.

Park, D. C., El-Sharkawi, M., Marks, R., Atlas, L. & Damborg,
M. (1991), Electric load forecasting using an artificial neu-
ral network, IEEE Transactions on Power Systems, 6(2),
442–49.

Park, S. H., Jeong, Y. J. & Kim, T. J. (2007), Transit travel time
forecasts for location-based queries, Journal of the Eastern
Asia Society for Transportation Studies, 7, 1859–69.

Patnaik, J., Chien, S. & Bladikas, A. (2004), Estimation of bus
arrival times using APC data, Journal of Public Transporta-
tion, 7(1), 1–20.

Peters, J., Verhoest, N., Samson, R., Boeckx, P. & De Baets,
B. (2008), Wetland vegetation distribution modelling for
the identification of constraining environmental variables,
Landscape Ecology, 23(9), 1049–65.

Sesnie, S. E., Gessler, P. E., Finegan, B. & Thessler, S.
(2008), Integrating Landsat TM and SRTM-DEM derived
variables with decision trees for habitat classification and
change detection in complex neotropical environments, Re-
mote Sensing of Environment, 112(5), 2145–59.

Shalaby, A. & Farhan, A. (2003), Bus travel time prediction
model for dynamic operations control and passenger in-
formation systems, in Paper prepared for presentation at
the 82nd Annual Meeting of the Transportation Research
Board, Washington DC, January 2003.

Smith, B. L., Williams, B. M. & Oswald, R. K. (2002), Com-
parison of parametric and nonparametric models for traffic
flow forecasting, Transportation Research Part C: Emerging
Technologies, 10(4), 303–21.

Steele, B. M. (2000), Combining multiple classifiers: an ap-
plication using spatial and remotely sensed information for
land cover type mapping, Remote Sensing of Environment,
74(3), 545–56.

Tam, M. L. & Lam, W. H. (2009), Short-term travel time pre-
diction for congested urban road networks, in Paper pre-
sented at the Transportation Research Board 88th Annual
Meeting, Washington DC.

Thomas, T., Weijermars, W. & Van Berkum, E. (2010), Pre-
dictions of urban volumes in single time series, IEEE
Transactions on Intelligent Transportation Systems, 11(1),
71–80.

van Hinsbergen, C. I., Van Lint, J. & Van Zuylen, H.
(2009), Bayesian committee of neural networks to pre-
dict travel times with confidence intervals, Transporta-
tion Research Part C: Emerging Technologies, 17(5), 498–
509.

Vapnik, V. (2013), The Nature of Statistical Learning Theory
Neural Networks. Springer Science & Business Media, New
York, NY.

Vapnik, V. N. (1999), An overview of statistical learning the-
ory, IEEE Transactions on Neural Networks, 10(5), 988–99.

Wall, Z. & Dailey, D. (1999), An algorithm for predicting the
arrival time of mass transit vehicles using automatic vehicle
location data, in Paper presented at the 78th Annual Meeting
of the Transportation Research Board, National Research
Council, Washington DC.

Williams, B. M. & Hoel, L. A. (2003), Modeling and forecast-
ing vehicular traffic flow as a seasonal ARIMA process: the-
oretical basis and empirical results, Journal of Transporta-
tion Engineering, 129(6), 664–72.

Wu, M. & Adeli, H. (2001), Wavelet-neural network model
for automatic traffic incident detection, Mathematical and
Computational Applications, 6(2), 85–96.

Yang, R.-M., Zhang, G.-L., Liu, F., Lu, Y.-Y., Yang, F.,
Yang, F., Yang, M., Zhao, Y. G. & Li, D.-C. (2016),
Comparison of boosted regression tree and random for-
est models for mapping topsoil organic carbon concentra-
tion in an alpine ecosystem, Ecological Indicators, 60, 870–
78.

Yu, B., Yang, Z.-Z., Chen, K. & Yu, B. (2010), Hybrid
model for prediction of bus arrival times at next sta-
tion, Journal of Advanced Transportation, 44(3), 193–
204.

Yu, B., Yang, Z. & Yao, B. (2006), Bus arrival time prediction
using support vector machines, Journal of Intelligent Trans-
portation Systems, 10(4), 151–58.



Computer-Aided Civil and Infrastructure Engineering 32 (2017) 154–169

Short-Term Traffic Speed Prediction for an Urban
Corridor

Baozhen Yao, Chao Chen, Qingda Cao, Lu Jin & Mingheng Zhang

School of Automotive Engineering, Dalian University of Technology, Dalian 116024, P. R. China

Hanbing Zhu & Bin Yu*

School of Transportation Science and Engineering, Beihang University, Beijing 100191, P. R. China and Transportation
Management College, Dalian Maritime University, Dalian 116026, P. R. China

Abstract: Short-term traffic speed prediction is one of
the most critical components of an intelligent transporta-
tion system (ITS). The accurate and real-time prediction
of traffic speeds can support travellers’ route choices and
traffic guidance/control. In this article, a support vec-
tor machine model (single-step prediction model) com-
posed of spatial and temporal parameters is proposed.
Furthermore, a short-term traffic speed prediction model
is developed based on the single-step prediction model.
To test the accuracy of the proposed short-term traffic
speed prediction model, its application is illustrated us-
ing GPS data from taxis in Foshan city, China. The re-
sults indicate that the error of the short-term traffic speed
prediction varies from 3.31% to 15.35%. The support
vector machine model with spatial-temporal parameters
exhibits good performance compared with an artificial
neural network, a k-nearest neighbor model, a histori-
cal data-based model, and a moving average data-based
model.

1 INTRODUCTION

The urbanization and mobilization occurring in China is
causing severe traffic congestion in most metropolises.
There is no way to completely satisfy the demand by
constructing new lanes or roads because of limited
urban land resources. Therefore, it is important to
improve the efficiency of the existing road network.
In recent years, intelligent transportation system (ITS)
technologies have been widely applied in China, which
are essential components of a traffic management

∗To whom correspondence should be addressed. E-mail: ybzhyb@
163.com.

system. Monitoring facilities and positioning equipment
(for instance, GPS equipped on taxis and private
cars) have been installed in most cities. To implement
advanced and efficient traffic management systems, the
increasing need for short-term traffic speed prediction
has attracted the attention of traffic engineers and
researchers.

Many relevant techniques of intelligent transporta-
tion systems have successfully been applied in the
highway management and traffic delay optimization
models, such as neural networks, wavelets, and chaos
theory (Ghosh-Dastidar and Adeli, 2003, 2006; Karim
and Adeli, 2003a, b; Jiang and Adeli, 2003, 2004a, b).
An extensive review of short-term traffic prediction
was provided by Vlahogianni et al. (2004). The two
well-known modelling approaches for short-term
prediction methods can broadly be classified into
parametric and nonparametric techniques (Chen et al.,
2012, 2013; Chen and Yang, 2010). Among the wide
variety of available statistical parametric techniques,
several algorithms have been applied in short-term
traffic flow prediction, including a historical average
algorithm (Smith and Demetsky, 1997), smoothing
techniques (Smith and Demetsky, 1997; Williams
et al., 1998) and the autoregressive integrated moving
average (ARIMA) (Kirby et al., 1997; Hamed et al.,
1995; Williams, 2001). A radial basis function neural
network (RBFNN) learns input–output mapping by
covering the input space with basis functions that
transform a vector from the input space to the output
space (Adeli and Karim, 2000; Adeli, 2001; Karim and
Adeli, 2002, 2003c; Adeli and Jiang, 2003; Dharia and
Adeli, 2003). Statistical techniques were popular in
short-term traffic flow prediction in the 1990s because

C© 2016 Computer-Aided Civil and Infrastructure Engineering.
DOI: 10.1111/mice.12221
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of their simple structure and rapid, low-cost updating.
Wavelet-based signal processing is a powerful tool for
the analysis and synthesis of time series (Mallat, 1999).
The wavelet packet-autocorrelation function (ACF)
was proposed for the selection of the decomposition
level in the wavelet multiresolution analysis of traffic
flow time series (Jiang, 2004b). Kalman filtering theory,
which uses a state-space model, has also been applied
in short-term traffic flow prediction because of its
use by Okutani and Stephanedes (1984). In previous
studies, time series-based methods have been proposed
for predicting traffic flow (Wu et al., 2004; Kayacan
et al., 2010). The results from multiple studies (Okutani
and Stephanedes, 1984; Smith and Demetsky, 1996;
Stathopoulos and Karlaftis, 2003; Ojeda et al., 2013)
demonstrated that Kalman filter theory is well-suited
for modelling transportation data because of its multi-
variate nature. Moreover, the Kalman filter algorithm
allows the state variable to be updated continuously.
This is the main reason that the Kalman filter algorithm
is a popular short-term traffic flow prediction method.
In addition, Kalman filtering theory has been proposed
for predicting short-term traffic conditions (Wang and
Papageorgiou, 2005; Antoniou et al., 2007). Nagel et al.
(2000) contributed some original and important high-
speed microsimulations of large-scale road networks.

Nonparametric regression relies on the relationship
between dependent and independent variables rather
than on any specific functional form. Nonparametric
techniques, such as support vector machines (SVMs),
artificial neural networks (ANNs), and the k-nearest
neighbor (k-NN) model, have attracted attention for
short-term traffic prediction. Applications of neural
networks to short-term traffic prediction are based on
simple multilayer perceptrons (MLPs) (Dharia and
Adeli, 2003; Smith and Demetsky, 1995, 1997; Clark,
2003; Dia, 2001; Dougherty and Cobett, 1997; Ishak
et al., 2003). Some researchers have introduced other
techniques to improve the prediction performance
of the neural network algorithm, e.g., the wavelet
microsimulation model (Ghosh-Dastidar, 2006);
Boltzmann-simulated annealing (Jiang, 2003); Kalman
filter (Vythoulkas, 1993); wavelet (Boto-Giralda et al.,
2010; Jiang and Adeli, 2005); moving average model,
exponential smoothing model and autoregressive MA
(ARIMA) (Tan et al., 2009); Bayesian model (Zheng
et al., 2006); and empirical mode decomposition (Wei
and Chen, 2012). The k-NN model is one of the most
popular methods because of its simple nature and wide
applicability, and it has been successfully applied by
many scholars for short-term traffic flow prediction
(Smith et al., 2002; Zuo et al., 2008; Akbari et al., 2011;
Turochy, 2006; Lam et al., 2006; Chang et al., 2012;
Zhang et al., 2013). These studies demonstrate that the

k-NN model performs well in predicting short-term
traffic flow. Recently, new interest in SVMs (Zhang and
Xie, 2008; Wu et al., 2004; Manoel et al., 2009; Zhang
and Wu, 2009, 2012a, 2012b) has arisen for short-term
traffic prediction. A SVM is a mathematical data-driven
model similar to the ANN model that can identify a
complicated nonlinear system and does not require a
formula derived from existing data. Wu et al. (2004)
and Yu et al. (2006) applied support vector regression
(SVR) for travel-time prediction. By comparing its
results to those of other baseline travel-time prediction
methods, they examined the feasibility and applicability
of SVMs for vehicle travel-time prediction.

Researchers have proposed many methods for short-
term traffic speed prediction. However, a traveller
would prefer to be given the likely traffic speed of
the whole route (including multiple road links) from
origin to destination at the time when he/she will be
on the roads rather than further traffic information
on a road link in the urban corridor. If the traffic
speed of the route between the origin and the des-
tination could be predicted, travellers would be able
to efficiently select an urban corridor as soon as they
are on the road, and administrators would be able to
successfully manage, control, and guide traffic speed
on the road network. To provide further traffic in-
formation on the urban corridor (including multiple
road links) to travellers, scholars have applied historical
and real-time traffic information-based models (Yildiri-
moglu and Geroliminis, 2013), an extended time-series-
based approach (Min and Wynter, 2011), modular neu-
ral networks (Vlahogianni et al., 2007), and dynamic
Bayesian networks (Queen and Albers, 2009) to predict
traffic speed at multiple road link locations. Addition-
ally, Hofleitner et al. (2012) used a hybrid model to pre-
dict traffic speed.

However, for traffic speed prediction along an entire
corridor, it is not sufficient to sum the predicted travel
times (or instantaneous travel times) of road links in-
cluded in the corridor at the starting time of the trip.
Because cars spend time going through each road link,
when a car arrives at the next road link, the traffic
speeds will not be the same as those predicted before.
Hence, there are two steps to predict the travel time of
a road link correctly: (1) predicting the arrival time at
the target road link and (2) predicting the driving time
of the target road link at the time when the car will ar-
rive there.

This article aims to make two contributions. First, it
focuses on using SVMs in short-term traffic speed pre-
diction. This prediction model can support travellers’
route choices and traffic guidance. A single-step pre-
diction model considering spatial and temporal param-
eters is proposed. Following this, a short-term traffic
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Fig. 1. Short-term traffic speed prediction.

speed prediction model, including the multi-time-step
traffic prediction of several road links, is developed.
Second, the performance of several prediction meth-
ods (namely, SVM, ANN, k-NN, ARIMA, the historical
data-based model and the moving average data-based
model) are assessed and compared in terms of predic-
tion traffic speed. The performance comparison of sev-
eral models can provide valuable insight for researchers
as well as practitioners.

The remainder of the article is organized as follows.
Section 2 describes the short-term traffic speed predic-
tion problem. In Section 3, the theory underlying the
SVM algorithm is introduced. A single-step prediction
model of short-term traffic speeds, in which spatial-
temporal parameters are considered, is proposed in Sec-
tion 4. Then, the short-term traffic speed prediction
model is constructed. Data collection and processing are
described in Section 5. Section 6 reports the computa-
tional results, and the conclusions are discussed in Sec-
tion 7. Finally, a list of symbols is given in Section 8.

2 PROBLEM DESCRIPTION

When people want to reach their destination quickly,
they tend to choose the fastest route. However, because
of changing traffic speed, decisions cannot be made
merely according to the spatial distance from the ori-
gin to the destination. Therefore, time-dependent traf-
fic speed information between the origin and the des-
tination is particularly important for travellers making
flexible route choices.

Short-term traffic speed prediction can predict traffic
speeds for more than one road link. For instance, a car
plans to travel from an origin to a destination (Figure 1),
and the driver cares about the length of the trip. The ar-

rival time of the car at each road link is not fixed because
of the time-varying characteristic of traffic speed. Thus,
at different arrival times at a road link, the traffic speeds
are different.

Figure 1 shows an example of a short-term traf-
fic speed prediction. The car arrives at the beginning
of road link 1 at 7:00, and the driver wants to know
how long it will take from the beginning of road link
1 through three road links to the destination. First, a
multi-time-step prediction of each road link can be im-
plemented through a single-step prediction model, and
the predicted travel time (i.e., the estimated travel time
of each period between 7:00 and 7:25) can be obtained.
Assume that the travel time at road link 1 of the car is
5 min. Then, the car will reach road link 2 at 7:05. The
travel time of the car at road link 2 is estimated to be
approximately 10 min between 7:05 and 7:10. Thus, the
car will reach road link 3 at 7:15 and the destination at
7:20.

3 SVM MODEL

The SVM was originally used in pattern recognition.
With the introduction of the ε-insensitive loss function
by Vapnik, the SVM has been extended to solve the
problem of nonlinear regression. The support vector re-
gression machine first needs to choose a nonlinear map-
ping �(x), which can map data in the original space to a
high-dimensional feature space and then make a linear
estimate in the high-dimensional feature space. Assume
a set of training samples {xi , yi }n

i , for which the input
data xi ∈ RN and output data yi ∈ R, and construct the
optimal decision function in high-dimensional feature
space:

f (x) = wT �(x) + b (1)
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where � (x) is a nonlinear mapping that can convert all
raw data to another feature space in which the sample
data are linearly separable, w is the weight and b is the
offset, which can be estimated by minimizing Equation
(2):

min RSVM(C) = C

n

n∑
i=1

L(yi , f (xi )) + 1
2
‖w‖2 (2)

Define the ε-insensitive loss function:

L (y, f (x)) =
⎧⎨
⎩

0 if
∣∣y − f (x)

∣∣ ≤ ε

∣∣y − f (x)
∣∣ − ε otherwise

(3)

L(y, f (x)) is the loss function, which is used to mea-
sure the degree of prediction error. For a given input xi ,
f (x) gives the corresponding result, which may be dif-
ferent from y. The ε-insensitivity can allow the presence
of prediction error within a certain range and ensure
that the model can find the optimal solution. Empirical
risk is the difference between predicted and real value.
The first part of the empirical risk on the right in Equa-
tion (2) can be estimated by the nonsensitive loss func-
tion given in Equation (3), and the second part is the
regularization confidence. Regularization confidence is
a protection method that can avoid overfitting. Regu-
larization confidence works by introducing certain re-
strictions that can reduce the complexity of the machine
learning model. The structural risk minimization princi-
ple of the SVM is a compromise considering the empir-
ical risk and confidence limit, minimizing the expected
risk and preventing overlearning problems. The value
of ε affects the support vector size, and C is the regular-
ization parameter, which controls the degree of punish-
ment beyond the error of the sample. By introducing the
relaxation of nonnegative variables ξi and ξ ∗

i , the objec-
tive function equation of the support vector regression
machine (2) can be transferred into Equation (4):

min R(w, b) = 1
2
‖w‖2 + C

n∑
i=1

(ξi + ξ ∗
i )

s.t.

⎧⎨
⎩

yi − wT �(xi ) − b ≤ ε + ξ ∗
i

wT �(xi ) + b − yi ≤ ε + ξ ∗
i

ξi ≥ 0, ξ ∗
i ≥ 0

(4)

Finally, by introducing the Lagrange multiplier, the
optimization problem is converted into a dual problem:

R(ai , a∗
i ) =

n∑
i=1

di (ai − a∗
i ) − ε

n∑
i=1

(ai + a∗
i )

− 1
2

n∑
i=1

n∑
j=1

(ai − a∗
i )(a j − a∗

j )K (xi , x j )

s.t.

{ ∑n
i=1 (ai − an

i ) = 0
0 ≤ ai , a∗

i ≤ C, i = 1, . . . n

(5)

K(x,x1)

K(x,x2)

K(x,xi)

K(x,xn)

The result

Input 
Vector

Supper 
Vectors

Kernel
Function

Output
Layer

Fig. 2. Structure of SVM.

The decision function shown in Equation (1) is corre-
spondingly converted into:

R(ai , a∗
i ) =

n∑
i=1

(ai − a∗
i )K (x, xi ) + b (6)

In Equation (6), K (x, xi ) is the kernel function. Es-
sentially, the kernel function is a mapping function. To
reduce the algorithm complexity by using the kernel
function, kernel functions can convert a nonlinear learn-
ing problem into a linear learning problem. The param-
eters ai , a∗

i are the corresponding Lagrange multipliers,
where αi a∗

i = 0 only if the corresponding data sample
point of ai �= a∗

i is defined as the SVM. SVM shows a
strong resistance to the overfitting problem and offers
excellent generalization performance. This is mainly
because SVM can construct a mapping from one-
dimensional input vector into high-dimensional space
by the use of reproducing kernels. The architecture of
SVM is shown in Figure 2.

4 SHORT-TERM TRAFFIC SPEED PREDICTION
MODEL

In an urban road network, road links do not exist in iso-
lation. Traffic speed on both upstream and downstream
road links can affect the traffic speed of the current road
link. An understanding of both spatial and temporal in-
formation facilitates identifying road information.

Based on the successful cases mentioned above, an
improved SVM model composed of temporal and spa-
tial parameters is developed in our study. First, single-
step prediction models including different state vectors
are established, and then a short-term traffic speed pre-
diction model is developed.
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Fig. 3. Prediction model with spatial and temporal information based on SVM.

4.1 Single-step prediction model based on SVM

In the single-step model, the temporal information of
the target road link and traffic speed of upstream/ down-
stream road links is considered. Figure 3 shows the
structure of the spatial-temporal model.

Assume the target road link is the m road link and
that the current time is the t interval. In the article, the
speed at each road link is used to estimate the traffic
speed Ŝm(t). The parameter �T denotes the temporal
state vector of the target road link, �U denotes the traf-
fic speed of the upstream road links, and �D denotes the
traffic speed of the downstream road links.

State vectors: X = {�T,�U,�D}

�T = {· · · , Sm−1(t i ), Ŝm−1(t i ), · · ·}

�T = {· · · , Sm(t i ), Ŝm(t i ), · · ·}

�T = · · · , Sm+1(t i ), Ŝm+1(t i ), · · ·

Output values: Ŝm(t)
where m is the mth target road link, t is the time period
of vehicle entering within mth road link, t i is the ith time
period; Sm(t) is the actual speed on mth road link in time
period t ; Ŝm(t) is the prediction speed of vehicle on mth
road link in time period t .

4.2 Short-term traffic speed prediction model

A short-term traffic speed prediction model predicts the
traffic speed on a route containing more than one road
link. In a short-term traffic speed prediction model,
the traffic speed of each road link included in a route
will be first predicted based on a single-step prediction
model. Then, the car’s arrival time at the 2nd road link
is predicted, and the traffic speeds at the 2nd road link
at the car’s arrival time can be estimated. This process
is repeated to compute the destination arrival time. In
addition, if the travel time changes from time period
t to time period t+1 during travel, the Ŝm(t) in time
period t is used rather than t+1. The reason is that the
speed of the target car is primarily influenced by the
traffic condition in front of the target car rather than the
traffic condition behind the target car. Figure 4 shows
the procedure of the short-term traffic speed prediction
model. Assume that the route includes M road links.
The mathematical expression of the short-term traffic
speed prediction model is as follows:

� = T1 + T̂1 + T̂2 + · · · + T̂M = T1 +
M∑

m=1

T̂m (7)
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Fig. 4. Short-term traffic speed prediction model.

T̂m = Lm

Ŝm (t)
(8)

t = Tm − T1

td
(9)

Tm = T1 + T̂1 + · · · + T̂m−1 (10)

where � is the travel time from beginning to end; M
is the number of the links between the origin and the
destination; m is the mth road link; td is the time inter-
val; T1 is the time of vehicle arrival at 1st road link; Tm

is the time of vehicle arrival at mth road link; T̂m is the
travel time of vehicle entering within mth road link; Lm

is the length of mth road link; t is the time period of
vehicle entering within mth road link; Ŝm(t) is the pre-
diction speed of vehicle in time period t on mth road
link; “[·]” is used to round up to an integer.

The calculation steps are as follows:

Step 1 Initialization:

First, data on the current road link, upstream road
link and downstream road link are gathered.

Set m = 1, where m denotes the current road link.
Set M to be the maximum number of links between

the origin and the destination.

Step 2 Establish a single-step prediction model for each
road link.

Step 3 Predict the travel time of the road link. (The ar-
rival time at the entry to the next road link can also be
determined.)

Step 3.1 Prepare the input data according to the arrival
time of the current road link; the input data may be ac-
tual data from a historical database or data predicted
previously.

Step 3.2 Use the single-step prediction model to predict
the travel time Lm

Ŝm (t)
of the current road link.

Step 3.3 Combining the entry time m and driving time
Lm

Ŝm (t)
of the current road link, calculate the arrival

time T̂m+1 at the entry to the next road link m+1.
Step 4 Termination check of the multi-time-step predic-

tion.
If exceeding the maximum number (m > M), then stop.

Otherwise, set m = m+1 and move on to Step 3.

5 DATA COLLECTION AND PROCESSING

Collecting real-time traffic data is essential for short-
term traffic speed prediction. The wide application of
GPS equipment in taxis represents an easy method to
obtain first-hand data of floating cars. Large quantities
of real-time data can be collected from the GPS sys-
tem, such as the longitude and latitude of a running car,
travel speed, driving direction, and time. In this article,
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Fig. 5. Spatial locations of the research targets and the information obtained from GPS.

Table 1
Information of Fenjiang road

Road name Road interval Detail Length (Km)

Fenjiang Rd 1 Guidan Rd-Sizhi Rd 4 lane, two-way 2.85
Fenjiang Rd 2 Sizhi Rd-Renmin Rd 4 lane, two-way 0.84
Fenjiang Rd 3 Renmin Rd-Weiguo Rd 4 lane, two-way 0.79
Fenjiang Rd 4 Weiguo Rd-Jihua 5th Rd 4 lane, two-way 1.29
Fenjiang Rd 5 Jihua 5th Rd-Lvjing 1st Rd 4 lane, two-way 1.07
Fenjiang Rd 6 Lvjing 1st Rd-Old Kuiqi Rd 4 lane, two-way 0.87

we compute the traffic speeds based on taxi GPS data in
Foshan city, China.

Six road links on Fenjiang Road in Foshan city are
chosen as the study objects: Guidan Road–Sizhi Road,
Sizhi Road–Renmin Road, Renmin Road—Weiguo
Road, Weiguo Road–Jihua 5th Road, Jihua 5th Road–
Lvjing 1st Road, and Lvjing 1st Road–Old Kuiqi Road.

The spatial location and road information of the six road
links are shown in Figure 5 and Table 1.

The GPS systems of the sampling taxis can send in-
formation every 30 s. The probability that the infor-
mation cannot be transmitted is less than 10%. The in-
formation includes the longitude, latitude, travel speed,
driving direction, and time. During workdays between
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Fig. 6. An example of the speed computation of a taxi.

Fig. 7. Distribution of driving speed.

October 8 and November 10 in 2012, GPS information
from 400 taxis was collected during the morning peak
(7:00–9:00), and we selected six road links with suffi-
cient data. Figure 5 shows the locations of the taxis by
matching the longitude and latitude information to the
map.

Although speed data for the taxis are included in the
GPS information, the speed values are unreliable be-
cause the speed is a vector with direction. Thus, af-
ter map-matching, the speed of the taxi must be re-
calculated according to the location information of the
taxi. Figure 6 shows a simple example of the speed com-
putation of a taxi using location information and time
data. Points A, B, C, and D are the positions at which
the taxi sends GPS data during the course of its move-
ment on a road link. Then, the speed of the taxi from
points A to D can be calculated using the distance and
time gaps between these points. Note that the distance
from points A to D is obtained by summing the spheri-
cal distances between each set of two neighboring points

rather than by the Euclidean distance between points
A and D. The spherical distance is calculated using the
data from the GPS system. Moreover, Equation (11) is
used to calculate the spherical distance between two ad-
jacent points. The GPS sends data every 30 s, and as
a result, the data are not consecutive. The arrival time
and departure time of the road links are not known. In
Figure 6, point A is not the beginning of the road link,
and point D is not the terminal point. However, these
are the first and last points at which the car transmit-
ted data. We use the distance between A and D to di-
vide the time interval between them to obtain the travel
speed of the road link.

d = r ∗ arccos
{
sin(x1) ∗ sin(x2)

+ cos (x1) ∗ cos (x2) ∗ cos (y1 − y2)
}

(11)

where d is the spherical distance, r is the radius of the
earth, x1 is the dimension of A, y1 is the precision of A,
x2 is the dimension of D, and y2 is the precision of D.
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Fig. 8. Average speed on six road links during different periods.

However, data from the GPS are not always accurate.
(The accuracy is approximately 90%.) Data distortion
may occur either because of detector malfunction or
transmission problems, and thus, abnormal data should
be eliminated by calculating the driving speed. All driv-
ing speeds exceeding 60 km/h are eliminated because
the speed limit of the target road link is 60 km/h. More-
over, the speed of an empty taxi cannot represent the re-
ality of traffic speed on the target road link. Therefore,
the data on an empty taxi were not used in this study.
When the taxi stops to discharge a passenger, the speed
is zero; such data are discarded, and data use resumes
only when the taxi moves again. Finally, Equation (12)
is used to calculate the space-mean speed on each road
link.

Sm (t) =
N∑

i=1

Vi (t) /N (12)

where Sm(t) is the average driving speed at time t on
road link m, N is the number of times that taxi sends
GPS data on the road link m, and Vi (t) is the speed
of the taxi at each position. Thus, the average driving
speed on a road link during each time period can be ob-
tained. In total, 118,067 valid data points were obtained.
The distribution of driving speed is shown in Figure 7.
Figure 8 shows the average speed on each road link over
different time periods. As seen Figure 8, there is a large
fluctuation in the observed speed on Fenjiang Rd 4. The
primary reason is that there are two schools, Rongshan
middle school and Hongye primary school (Figure 5),
along Fenjiang Rd 4. Because there is no school bus
for the two schools, parents need to drop their children
off at school. Available parking spots are randomly dis-
tributed, which leads to increased variation in the ob-
served speeds on the road.

6 NUMERICAL STUDY

The database is divided into three categories: sample
set, test set, and prediction set. This study was con-
ducted on a PC with an Inter Core i5 CPU (2.5 GHz)
and 4 GB memory. For the one month of taxi data in
Foshan, those from Monday to Wednesday are taken
as the sample data (past data set for calibrating pa-
rameters and validating the prediction performance),
whereas those from Thursday and Friday are taken as
the test data (used to calibrate the parameters of the
models) and those from Saturday and Sunday are taken
as prediction data (used to validate the prediction per-
formance of the models). Overall, the test data and pre-
diction data constitute approximately 20% of the sam-
ple database, and the rest are used as a sample set. The
mean absolute percentage error (MAPE) was used as a
measure to evaluate the efficacy of the proposed models
in this article.

MAPE = 1
P

P∑
i=1

∣∣Ŝm (t) − Sm (t)
∣∣

Sm (t)
(13)

where Ŝm(t) is the prediction speed of vehicle on road
link m in time period t , Sm(t) is the actual speed on road
link m in time period t, and P is the prediction number.

6.1 Parameter determination

To establish the single-step model, we validate the per-
formances of various models with different state vec-
tors, as shown in Table 2. Figure 9 shows the MAPE
of the prediction using SVM models with different in-
put state vectors. Then, the data from Fenjiang Rd 2 are
used to test the models’ performance.

As shown in Figure 9, when the state vector num-
bers of the upstream road link and current road link
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Table 2
Models and corresponding state vectors

Upstream road link Target road link Downstream road link

Sm-1(t) Sm-1(t–1) Sm(t) Sm(t–1) Sm+1(t) Sm+1(t–1)

Model 1 � � � �
Model 2 � � � � �
Model 3 � � � �
Model 4 � � � � �
Model 5 � � � � � �

Fig. 9. MAPE values of SVM models with various state vectors.

are the same, the accuracy of Model 4 is higher than
that of Model 1 and the accuracy of Model 5 is higher
than that of Model 2, highlighting the importance of the
downstream road link information for prediction accu-
racy. It is generally known that traffic speed changes
rapidly. The state of the target road link during time
t was influenced directly by the state of the upstream
road link during time t. The state of the upstream road
link during time t-1 had little influence on the state of
the target road link during time t. The relationship be-
tween Sm−1(t − 1) and Sm(t) was very weak. Prediction
accuracy is degraded by excessive dependence on the
upstream information. Hence, Model 5 is not more ac-
curate than Model 4, and Model 2 is not more accurate
than Model 1. Overall, Model 4 is the best and exhibited
the lowest MAPE. Therefore, it is used in this article.

In addition, the radial basis function (RBF) kernel
function is used for the SVM model in this study (Yu
et al., 2010, 2011). Before applying the SVM, two
parameters, C and e, are first determined. In identifying
the parameters in SVM models with different input
state vectors, grid-search is used to identify the optimal
parameter values. Because the MAPE of Model 4 is the
lowest for the SVM, this study adopted the values of
the two parameters (C, e) as (1.57, 0.03).

6.2 Short-term traffic speed prediction

The short-term traffic speed prediction model involves
the subsequent road links, and a taxi arriving at one of
these road links is a future event. Considering the sat-
isfactory performance of the 4th SVM model in this ar-
ticle, a short-term traffic speed prediction model con-
taining road links from the origin (road link 1) to the
destination (road link 5) is tested based on the predic-
tion results of multiple single-step predictions by this
model. Figure 10 shows the prediction errors of traffic
speed from the origin to the destination. Furthermore,
the short-term traffic speed prediction model (dynamic)
was compared with traditional traffic speed prediction
model (static). From the comparison, the former per-
forms better than the latter.

As shown in Figure 10, the MAPE of the short-term
traffic speed prediction model varies from 3.31% to
15.35% on a route with a total length of 7.7 km. We find
that the errors of the short-term traffic speed prediction
model do not tend to increase with time. However, it
can be observed that the prediction errors are small be-
fore 7:45 and after 8:25 (the off-peak period) compared
with those between 7:45 and 8:25 (the peak period). In
the off-peak periods, the driving time of the corridor can
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Fig. 10. Comparisons between short-term traffic speed prediction model and traditional traffic speed prediction model.

Table 3
MAPEs of SVM and ANN models with different state

vectors

State vectors MAPE of SVM MAPE of ANN

Model 1 8.45 7.12
Model 2 8.79 8.82
Model 3 7.09 8.11
Model 4 7.05 7.64
Model 5 8.32 8.97
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Fig. 11. MAPEs of k-NN models with different parameters.

be estimated using a few-step prediction for each road
link. For example, if we want to predict the driving time
from the entry of road link 1 to the exit of road link
5, the driving time from the entry of road link 1 to the
exit of road link 5 would be more than one time inter-
val (5 minutes) at the relatively low traffic speed. When
the driving time is beyond several time intervals, the

single-step model is no longer suitable for prediction.
Thus, the single-step prediction model is used to pre-
dict traffic conditions on the target road link at the next
interval. The short-term traffic speed prediction model
used in this article is an extension of the single-step pre-
diction model. However, the predicted data calculated
from the previous steps (single-step prediction model)
were used successively as the input data in the follow-
ing steps (short-term traffic prediction model). The er-
rors generated from the predicted data gradually accu-
mulated with additional input data for the multi-step
prediction models, especially during the peak period be-
tween 7:45 and 8:25. Therefore, the accumulated predic-
tion error in the peak period exceeded that in the off-
peak period. From Figure 10, it can be observed that in
the peak period between 7:45 and 8:25, the prediction
errors are far higher than those of the off-peak period,
except at two points.

6.3 Prediction performance

To evaluate the model prediction performance of the
short-term traffic speed prediction model, we compare
the short-term traffic speed prediction model with the
moving average data-based model, historical data-based
model, ANN model, and k-NN model.

The formula of the moving average data-based model
is shown in Equation (14).

Ŝm(t) = 1
r

{
Sm(t − 1) + Sm(t − 2)

+ Sm(t − 3) + · · · + Sm(t − r)
}

(14)



Short-term traffic speed prediction for an urban corridor 165

Table 4
Value of (p, d, q) for each road

Road Fenjiang Rd 1 Fenjiang Rd 2 Fenjiang Rd 3 Fenjiang Rd 4 Fenjiang Rd 5 Fenjiang Rd 6

(p, d, q) (4, 1, 1) (2, 1, 2) (1, 1, 1) (2,1, 1) (1, 1, 1) (2, 1, 3)
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Fig. 12. Prediction accuracy comparison of six models.

where r is the number of previous time periods used.
The travel speed in time period t on road link m is pre-
dicted by the speed in the previous time period. The
data used for prediction is the previous data of the same
day. After the numerical example test, r is set to 3 be-
cause this value provided the best prediction accuracy.

The formula of the historical data-based model is
shown in Equation (15).

Ŝm (t) = 1
h

P∑
i=1

Smi (t) (15)

where Ŝm(t) is the average speed of all taxis during the
time period t in the historical database, Smi (t) is the av-
erage speed of the taxis during the same time interval t
of day i in the historical database, and h is the total days
in the historical database.

To determine the inputs for the ANN model, sensi-
tivity tests were conducted. The single-time-step model
was used to calibrate the two models. The input state
vectors of the ANN models are the same as those of
the SVM model (shown in Table 2), and the data used
to calibrate the ANN models are the same as those of
the SVM model. Similar to the SVM model, the input
state vectors of a standard three-layer ANN model are
determined based on the results of sensitivity tests. The
input state vectors of the ANN models are the same as
those of the sensitivity tests of the SVM model. ANN
models with different input state vectors have also been
trained by the BP algorithm, and the results are shown
in Table 3. In contrast to the SVM, the best input state
vectors of the ANN are the state vector combination

of Model 1. After determining the inputs of the ANN
model, a scaled conjugate gradient algorithm (Moller,
1993) is used to train the ANN model. The number of
hidden neurons is determined to be six in this study.

In the k-NN model with different numbers of near-
est neighbors (k), the MAPE of the model with k
= 2 among the four studied models is the highest
(Figure 11). Therefore, the two nearest neighbors
searched cannot comprehensively explain all the test
data. When k = 3, the MAPEs decline rapidly, and the
prediction accuracy increases. When k exceeds 3, the
overall volatility is not large, and when k �4, the volatil-
ity is small. Comparing the MAPEs with different val-
ues of k reveals that the prediction errors for road link
2 are lowest and are similar when k = 4 or 5. Thus,
the value of k is set to 4 in this study. In addition, the
ARIMA is adopted here. Table 4 shows the parameters
(p, d, q).

The prediction accuracies are compared in Figure 12.
The results show that the ARIMA does not obtain an
ideal result. The average MAPEs of the historical data-
based model and moving average data-based model
exceed 15%, and the average MAPEs of the SVM
model, ANN model, and k-NN model are relatively low
and comparable. The results predicted by SVM and
ANN exhibit the same trend because of their similar
fundamental construction. However, the performance
of the SVM model is better than that of the ANN model
because the ANN model can more easily converge to a
local maximum. When comparing the SVM model and
k-NN model, the k-NN model clearly exhibits larger
fluctuations, indicating that the SVM model is more
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Fig. 13. Comparisons between observed and predicted travel times.

Fig. 14. Predictability of the model on traffic speed.

effective. In terms of time, we find that in the off-peak
period (before 7:45 and after 8:25), the traffic speeds
are similar to historical data and that the accuracy
of the SVM model is better than or the same as
those of the ANN and k-NN models. However, in
the morning peak period (between 7:45 and 8:25),
the accuracy of all models decreased because of the
relatively complex traffic environment. Overall, the
SVM model provides good prediction accuracy. Based

on the results, the SVM model is a powerful tool
for short-term traffic speed prediction. Furthermore,
the time series of the observed and predicted travel
times are shown in Figure 13. The results show that
the error of predicted travel time varies from 4% to
16%. The average MAPE of the SVM model is less
than 16%. In Figure 14, the predicted traffic speed
is compared to the actual traffic speed. The valida-
tion test results, reported in Figure 14, demonstrate
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that the short-term prediction mode provides good
performance in predicting traffic speed. This model of-
fers satisfactory accuracy for traffic speeds lower than 35
km/h. However, when the traffic speed is greater than 35
km/h, the prediction accuracy is reduced. According to
the analysis, the main reason is that the data collection
accuracy is degraded when the traffic speed is higher.

7 CONCLUSIONS

The goal of this work is to devise an accurate method for
short-term traffic prediction and thereby support trav-
ellers’ route choices and traffic guidance/control. Based
on the SVM algorithm, a novel single-time-step pre-
diction model that synthetically considers spatial and
temporal parameters is developed. A short-term traffic
speed prediction model is then constructed based on the
single-step prediction model.

In a test case using actual data, GPS information from
taxis in Foshan city was collected to validate the per-
formance of the proposed method. Six road links on
Fenjiang Road were taken as a test area to validate
the performance of the proposed methods, and the time
interval for prediction was set to 5 min. Although the
small interval of the 5-min data segmentation can mit-
igate the influence of traffic lights and intersections to
some degree, the short-term traffic speed on an arterial
road remains challenging to predict because of its com-
plex characteristics. The short-term traffic speed predic-
tion model involves subsequent road links, and a taxi
arriving at one of these road links is considered as a
future event. Moreover, compared with other models,
the SVM model with spatial-temporal parameters of-
fers better performance than the historical data-based
model, moving average data-based model, ANN model,
and k-NN model. Overall, despite the sophisticated
road conditions in the empirical test, our model obtains
desirable results with low MAPEs, and the results re-
main relatively satisfactory, even for multi-step predic-
tion. Therefore, the SVM-based model is confirmed to
be capable of predicting short-term traffic speed. The
proposed short-term traffic speed prediction model can
thus provide more comprehensive traffic guidance for
administrators and travellers.

8 LIST OF SYMBOLS

m mth target road link
t time period of vehicle entering within mth

road link
t i ith time period

Sm(t) actual speed on mth road link in time period t

Ŝm(t) prediction speed of vehicle on mth road link
in time period t

�T temporal state vector of the target road link
�U traffic speed of the upstream road links
�D traffic speed of the downstream road links

� travel time from beginning to end
M number of the links between the origin and

the destination time interval (The time inter-
val used in the article is 5 min)

T1 time of vehicle arrival at 1st road link
Tm time of vehicle arrival at mth road link
T̂m travel time of vehicle entering within mth

road link
Lm length of mth road link

Ŝm(t) prediction speed of vehicle in time period t
on mth road link

d spherical distance
r radius of the earth

x1 dimension of A
y1 precision of A
x2 dimension of D
y2 precision of D
N number of times that taxi sends GPS data on

road link m
Vi (t) speed of taxi at each position

P number of prediction
r number of previous time periods used

Smi (t) average speed of the taxis during the same
time interval t of a day i in the historical
database

h total days in the historical database
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a b s t r a c t

This paper presents a partway deadheading strategy for transit operations to improve tran-
sit service of the peak directions of transit routes. This strategy consists of two phases: reli-
ability assessment of further transit service and optimization of partway deadheading
operation. The reliability assessment of further transit service, which is based on the cur-
rent and recent service reliability, is used to justify whether or not to implement a partway
deadheading operation. The objective of the second phase is to determine the beginning
stop for a new service for the deadheaded vehicle by maximizing the benefit of transit sys-
tem. A heuristic algorithm is also defined and implemented to estimate reliability of fur-
ther transit service and to optimize partway deadheading operation. Then, the partway
deadheading strategy proposed in this paper is tested with the data from a transit route
in Dalian city of China. The results show the partway deadheading strategy with the rea-
sonable parameters can improve transit service.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Most cities in China are experiencing a rapid increase in motor ownership, which leads to a rising congestion, air pollution
and high energy consumption. The developments of public transportation systems are given priority to solve or improve
these urban transportation problems. However, transit service in most cities is still not satisfying due to various reasons.
One of the most important factors influencing transit service is the unreliability of transit operation which will greatly dis-
courage public transportation use. Transit operation is very complex due to some stochastic factors, such as weather, traffic
incidents and interference from other traffic. A main task of transit system agency is to implement various control strategies
to eliminate the influence of the disruptions in transit operation.

Generally, the scheduled headway at the peak direction is more difficult to be maintained compared to the reverse direc-
tion, especially at the peak periods. This can always induce bunching or large intervals between buses and the irregular loads
(overloaded and almost empty buses) at the peak direction all the time. Fig. 1 shows the case of passengers waiting for bus at
a stop of the peak direction of the transit route No. 23 in Dalian city. Although the headway of the route during peak period is
2.5 min, no bus arrives at the stop more than 20 min after the last bus departed. Due to the large passenger flow and traffic
congestion, this case often occurs. To satisfy stranded passengers at stops, operators tend to add buses to at the peak direc-
tion with large passenger demand. Due to the limited number of the buses, one of the most efficient strategies is to dispatch
a bus from the origin terminal of the off-peak direction to the origin terminal of the peak direction and restart a traffic service
at the peak direction. However, the real-time operations (i.e. whether to dispatch the bus to the origin terminal of the peak
direction and which bus to be dispatched) are both based on the operator’s experience and might not improve transit
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operation situation timely and effectively. Therefore, there is a potential need to develop real-time control strategies to re-
duce the irregularity service at the peak direction.

Holding strategy is one of the most commonly real-time control strategies in transit operation. When a bus is ahead of the
schedule, holding strategy is used to delay bus movement deliberately. Holding strategy can reduce headway variance and aver-
age waiting time of passengers. Holding strategy also increases travel time of passengers on board and the total bus cycle time.

Now intelligent transportation system (ITS) technologies have been applied into transit systems in many large or medium
cities of China such as automatic bus location (AVL) or identification (AVI) systems and automatic passenger counters (APC),
which provide the potential to remedy the disruptions of transit operation in real-time. Recently, in many studies on holding
problems, researchers have assumed real-time information available. Eberlein et al. (2001) studied holding strategy with
real-time information available. They constructed a mathematical programming model for the holding problem based on
a rolling horizon scheme. They also developed a solution method for the model. The rolling horizon in their study can reduce
the influence of the measure errors of real-time data. Dessouky et al. (2003) compared the performance of several holding
strategies at a terminal. They also developed methods to forecast bus arrival times and passenger loads. They found the
strategy with the most technologies can achieve the best performance. The strategy cannot only consider the time saved
for late-arriving transfer passengers, but also concern with the delay for passengers who are already on-board, or will board
at subsequent stops. van Oort et al. (2010) compared the schedule-based and headway-based holding strategies of short-
frequency bus route. They also analyzed the impact of the maximum holding time on the performance of two holding
strategies. Although holding strategies can efficiently improve the regularity of transit operation, too much slack in a
schedule will reduce service frequency (Zhao et al., 2006).

Corresponding to holding strategy, station-skipping strategies, such as stop skipping, deadheading and short turning, run
through some stops without service to reduce the total travel time and the headway between the bus and the preceding bus.
Eberlein et al. (1999) discussed several real-time control strategies, such as deadheading, expressing, holding strategies and
the combination of two among the strategies. They found that combined strategies are more efficient than any single strat-
egy. Fu et al. (2003) obtained the similar results as the findings from Eberlein et al. (1999).

Eberlein et al. (1998) discussed the real-time deadheading strategy, in which a deadheaded vehicle runs empty from a
terminal skipping several stops and starts its new service. The deadheading strategy needed to determine the dispatching
time of the deadheaded vehicle and the beginning stop of the new service. They formulated the deadheading problem that
minimized total passenger cost, and also developed a heuristic algorithm to solve the model. There are other studies (Furth,
1985; Ceder and Stern, 1981) on deadheading strategies.

Short-turning strategy is another dispatching control similar to deadheading strategy. The difference between the two
strategies is that the beginning stop of the new service has to be determined in deadheading strategy, while short-turning
point (the end point) of service needs to be decided in short-turning strategy. Some literature (Furth, 1987; Miller and Bunt,
1987; Vijayaraghavan and Anantharamaiah, 1995; Delle Site and Filippi, 1998) has optimized the location (stop) where a
vehicle will be directed to turn around before the end of the route in a short-turning service. Some other researchers also
discussed real-time short-turning strategies. Strathman et al. (2001) discussed several real-time control strategies including
holding, short turning, and reassignment actions based on Tri-Met automated bus dispatching system. They analyzed the
service regularity of transit operation and also mentioned when a bus should be chosen to turn around. Shen and Wilson
(2001) developed a real-time disruption control model for rail transit systems, which includes holding, expressing and
short-turning strategies. The paper did not include a methodology for short-turning strategy design. However, they found
that the efficiency of short-turning operations was quite sensitive to the accuracy of the disruption duration estimate. In
addition, some researchers (Strathman and Hopper, 1993; Kimpel et al., 2005) analyzed on-time performance of transit oper-
ation and presented several strategies, e.g., holding early arrivals (vehicles) and turning around late arrivals (vehicles) before
it reaches the end of its route.

Although there have been many studies on station-skipping strategies, most researchers were mainly concerned with the
construction and solution methods of the station-skipping problems. There is few literature to identify the conditions of

Fig. 1. Passengers waiting for buses at a stop of the peak direction of the transit route No. 23.
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transit operation, i.e., justify whether transit service is reliable or not. The focus of this study is to develop a new deadheading
strategy with transit service reliability assessment, which is called ‘‘partway deadheading strategy’’. According to this strat-
egy, bus runs empty and chooses the fastest path, which is not necessarily the bus route path to complete the off-peak direc-
tion trip and restarts its service from some stop at the peak direction.

If the fleet size is held constant, this strategy is more suitable for the routes with the imbalance in demand between the
two directions (e.g., the routes in most Chinese cities). Especially at peak periods, the strategy would be more effective. When
a bus completes its operation during the peak direction (i.e., the bus reaches the destination terminal), the bus would not
continue serve the reverse direction, but return to some stop and serve the peak-direction again. For the peak-direction,
an additional bus in this strategy needs to be provided for reducing passengers’ average waiting time. On the other hand,
the strategy will require more cost for operating the additional bus and increase the passenger waiting time at the off-peak
direction. Thus, it is important to determine the optimal beginning stop of the new service for the strategy. According to its
practical application, once a disturbance occurs in traffic operation, it would require the real-time control strategy to remedy
the unreliable transit service. In other word, service reliability in transit systems cannot be assured when a disturbance oc-
curs, so real-time control strategy is intended to enhance the reliability of transit services.

Service reliability is one of the most important factors that are used to assess the operation situation of transit route.
There is abundant literature on transit reliability assessment. The earliest researches on transit service reliability were made
by Polus (1978) and Silcock (1981). Lin et al. (2008) presented a quality control framework to evaluate bus schedule adher-
ence performances which were applied to quick and accurate quality control.

Chen et al. (2009) proposed bus service reliability analysis to improve the public transit service quality based on stop le-
vel, route level and network level respectively. There were three kinds of index used in their analysis, i.e. punctuality index
based on routes, deviation index based on stops, and evenness index based on stops. Sorratini et al. (2008) assessed bus ser-
vice reliability with micro-simulation by analyzing headway, excess waiting time, service regularity and recovery time of an
urban network. And they proposed a public transport schemes to improve the reliability. Van Oort and van Nes (2009) pre-
sented a tool to estimate the influence of network changes on the bus route regularity and transit demand based on actual
punctuality data of transit systems. Casello et al. (2009) presented a method to quantify the impacts of unreliable service on
generalized passenger cost. Their results showed that the increase of reliability on bus arrivals can greatly decrease the gen-
eralized passenger cost.

The reliability of transit service is considered as one of the main factors influencing the degree of passengers’ satisfaction.
However, most researches on real-time control strategy have rarely considered the service reliability of routes, even though
some studies have considered the on-time performance of buses at stops, e.g., holding strategy (Yu and Yang, 2009). In this
study, we consider a transit route where transit service of the peak direction is always inadequate due to both large numbers
of passengers and unreliable bus arrivals during the peak periods. Referring to the application in practice, the partway
deadheading strategy proposed in this study is to decide when a bus should be deadheaded and which stop is the beginning
stop for its new service at the peak direction of the deadheaded bus.

The reliability assessment of transit service of the route is firstly estimated according to average waiting time of passen-
gers. Service reliability is used to determine whether the partway deadheading strategy is adopted. It may avoid error dis-
patching and improve the efficiency of the strategy. As the operation is unreliable, the partway deadheading strategy is
optimized as a way to improve transit service. Then, the beginning stop for the new service of the deadheaded bus is deter-
mined by maximizing the benefit of the transit system. The study is organized as follows. The assessment of service reliabil-
ity of the route and the optimization of the partway deadheading strategy are given in Section 2. Section 3 presents a
heuristic algorithm. Section 4 reports computational results and the conclusions are discussed in Section 5.

2. Partway deadheading strategy development

2.1. Partway deadheading strategy description

A regular transit route with N stops is shown in Fig. 2. The terminals 1 (N) and N/2 (N/2 + 1) are the dispatching terminals,
while the other stops are common ones. Assume the direction from terminal N/2 + 1 to terminal N is the peak direction with
large passenger demand. The headway of two buses is the time interval arriving at the stop. Hi,j denotes the headway be-
tween the successive buses i and i � 1 arriving at the stop j.

For simplification, we assume that partway deadheading strategy can only be applied to improve the transit service of the
peak direction of the route, i.e., the buses at the origin terminal (i.e., terminal N/2 + 1) at the peak direction of the route can-
not be permitted running empty and then provide transit service at the off-peak direction. In practice, it is common that the
regular service of the peak direction is easier to be disturbed compared to the reverse direction, especially at peak periods.
This can induce bunching or large intervals between buses. Irregular loads (overloaded and almost empty buses) at the peak
direction always occur during peak periods. Therefore, there is a potential need to develop real-time control strategies to
reduce the irregularity service at the peak direction for large cities in China.

In the partway deadheading strategy proposed in this study, the deadheaded bus does not provide regular transit service
from the origin terminal (the terminal 1) at the off-peak direction. The deadheaded bus directly runs empty and restarts its
service from the origin terminal or some stop of the peak direction (Fig. 2).
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Since the deadheaded bus can choose the fastest path to its beginning stop for the new service, it consumes less time to
join into transit service of the peak direction compared to the regular transit buses at the off-peak direction. As for the peak
direction, the partway deadheading strategy can greatly decrease the waiting time of passengers at the stops after the begin-
ning stop for the new service of the deadheading bus, as well as reduce the irregular service (overloaded and almost empty
buses) and improve the service reliability of transit operation of the peak direction. However, it will increase the waiting
time of passengers at the off-peak direction and the extra cost due to bus running empty.

The partway deadheading strategy (Fig. 3) proposed in this study consists of two steps: reliability assessment of further
transit service of the route and optimization of the partway deadheading strategy.

When a bus has completed the operation of the peak direction, i.e., the bus arrives at the destination terminal of the peak
direction, the reliability of current transit service of the route is first estimated. Then, the reliability of the further transit
service of the route will be predicted. If the further transit service will be reliable, the target bus should not be deadheaded,
but it should provide regular transit service at the off-peak direction. Otherwise, the target bus will be deadheaded and begin
transit service from a stop of the peak direction. The beginning stop of the partway deadheading operation is determined by
integrating saving waiting time of passengers at the peak direction, additional waiting time of passengers at the off-peak
direction and extra cost of the partway deadheading running of the target bus. If the decided beginning stop is the terminal
N, this indicates that the target bus should not be implemented partway deadheading operation, but provided regular transit
service at the off-peak direction.

2.2. Reliability assessment of further transit service

Transit operation is always disrupted by some stochastic factors, especially at the peak period. Passengers are adversely
affected by the consequences associated with unreliable service, such as additional waiting time and even switch alternative
means of travel (such as car trip). Therefore, using waiting time of passengers to estimate the transit service reliability is a
feasible way. Among the factors that may contribute to the variation of passenger waiting time, headways between buses are
used to estimate the reliability of transit service.

2.2.1. Service reliability assessment of transit route
The irregular service (e.g., bunching or large headway) of transit route can increase average passenger waiting time. Thus,

headways between bus arrivals at stops can indirectly represent transit service regularity. In this study, the square of the
coefficient of variation of headways is used to estimate the reliability of transit service of a stop.

A rolling horizon of consecutive buses is introduced, which is considered as the effective information to assess the service
irregularity of stops. That is, only the information of the buses in the rolling horizon is used to assess the service irregularity
of the stop, while the information beyond the confine of the rolling horizon is skipped. Moreover, the horizon is rolled for-
ward with buses running, e.g., if we assume the length of the rolling horizon is l, as the bus t arrives at the stop j, the infor-
mation of the bus t enters into the horizon, while the information of the bus t–l is taken out of the horizon. Fig. 4 shows an
example of how the horizon is rolled at the stop j as the bus t arrives at the stop j.

Fig. 3. Illustration of the partway deadheading strategy.

Fig. 2. An example bus route.
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i � 1 from the stop j. qj denotes the reliability of transit service of a stop. Small values of the parameter indicate that transit
service of the stop is unreliable, while large values mean that the headways of bus arrivals at the stop are relatively uniform.

When assessing the reliability of transit service of a bus route, the reliabilities of transit service of all the stops should be
considered. To distinguish the contribution of the transit service reliability of each stop to the service reliability of the route,
the number of passengers at each stop is considered as the relative weight to the service reliability of the entire route. The
service reliability can also be defined as follow.
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i ¼

XN
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pj

P
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where Upeak
i denotes the current reliability of transit service with respect to the bus i. The higher Upeak

i is, the better the service
reliability of the route shows. pj is the number of passengers at the stop j. P is the total passengers at all the stops of the route.

2.2.2. Reliability prediction of further transit service
The bus operation is complex and the system is time-varying and unsteady. The current transit service is reliable or

acceptable, but with the operation of the vehicles, the service level might drop substantially, i.e. the service of transit system
becomes unreliable. If the measures are taken only based on the current service reliability, it will be difficult to improve the
level of service in the short time. Therefore, if the unreliable service of the future buses can be predicted in advance and the
corresponding scheduling strategy are adopted timely, it will be possible to avoid or reduce the impact of interference on
transit operation.

When a bus arrives at the terminal (i.e., terminal N), the reliability of the current transit service can be assessed. Then, the
reliability of the further transit service needs to be predicted. Similar to multiple step prediction of time series, the service
reliability prediction of multiple time steps (i.e., multiple following buses) can be divided into direct and indirect categories
(Cheng et al., 2008). Direct multiple step prediction constructs the independent models for each following bus, while indirect
one uses the recursive method of single predictor. Generally, direct multiple step prediction models can provide better per-
formance than indirect models. Therefore, the direct prediction model is used in this study.

To predict the reliability of the further transit service, the potential relation between the current and further transit ser-
vices should be deduced. In this study, k-NN method is used to model the reliability of the further transit service based on the
reliabilities of the current and recent transit services.

bUpeak
iþx ¼ f Upeak

i ; . . . ;Upeak
i�eþ1

n o
ð6Þ

where bUpeak
iþx denotes the predicted reliability of the further i + xth bus. x denotes the number of the prediction steps. e is the

number of input parameters of state judgment. Upeak
i ; . . . ;Upeak

i�eþ1 represents the service reliability of the latest e. f is the

Fig. 4. Illustration of rolling horizon of buses.
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function relation of the predicted service reliability and the service reliability of the latest e. Fig. 5 shows an example of the
further reliability of transit service ðbUpeak

iþx Þ is predicted as the bus i completes a regular service of the peak direction.

2.2.3. Applying k-NN in reliability prediction of transit service
The k-NN method is a relative old and simple method based on supervised learning (Bay, 1999; Yu et al., 2011). k-NN

method is therefore much suitable for real-time applications due to its simple structure (without the need to estimate
parameters). In the k-NN method for the reliability prediction of the further transit service, standard Euclidean distance is
used to match the k nearest neighbors in the feature space. On the basis of Euclidean distance, the k nearest neighbors with
the least distance to the input state can be determined. To weight the contributions of each neighbor, a common distance-
based scheme is adopted to compute the weight of each neighbor. The forecasts can then be obtained by taking the weighted
average of the observations from the k nearest neighbors.

bUpeak
iþx ¼

Xk

j¼1

1=dj

D
� ðUpeak

i0þx;jÞ ð7Þ

dj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXe�1

h¼0

ðUpeak
i0�h;j
�Upeak

i�h Þ
2

vuut ð8Þ

D ¼
Xk

j¼1

1
dj

ð9Þ

where dj represents the weighted distance between the jth nearest neighbor and the input state. Upeak
i0þx;j represents the service

reliability with respect to the bus i0 + x in the rolling horizon of the jth nearest neighbor. D represents the sum of the
weighted distance of the k nearest neighbors.

Fig. 6 shows an example of the k-NN method is applied to forecast the further reliability of transit service. Fig. 6a repre-
sents the foundational database, which is the basis for estimating whether the service of the future buses is reliable or not.
The data which is stored in this database are historical measured reliability of transit service. The state vector
xn = {x(1), x(2), . . . , x(l)} represents the current service reliability with respect to the bus in the rolling horizon (e.g. from
the bus i � e + 1 to the bus i in Fig. 5). When a new input state (e.g., xm in Fig. 6b) appears, the k nearest neighbors (e.g.,
x2 and x3) are sought based on utilizing Euclidean distance. Then, the predicted value of the reliability of future transit service
is given based on the formula (7).

If the predicted reliability of further transit service is lower than a given threshold (/), it means that the transit service of
the peak direction of the route can be disturbed by some factors. This will increase average waiting time of passengers of the
peak direction without some control strategies. Under the conditions, a partway deadheading operation will be implemented
to improve the further transit service. Since a partway deadheading operation shows the effort over some time, successive
partway deadheading operations are not encouraged. In general, successive partway deadheading operations can achieve
slightly more effort than a single partway deadheading operation due to their duplication of functions. Furthermore, succes-
sive partway deadheading operations also bring more disruption to the transit service at the off-peak direction. Thus, a coef-
ficient k, which is related to the number of the partway deadheading operations that do not begin their service, is introduced
to prevent successive partway deadheading operations. However, when further transit service will be greatly more unreli-
able, successive partway deadheading operations could provide more efficient to improve the further transit service.

Fig. 5. Reliability prediction of further transit service.
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bUpeak
iþx < k� / ð10Þ

where / denotes the threshold of the reliability of further transit service. k denotes the coefficient to control successive part-
way deadheading operations. In this study, k is the reciprocal of the number of the deadheaded buses that has not reached
the beginning stop of the new service, i.e., 0 < k 6 1.

2.3. Partway deadheading formulation

As service of the route is unreliable and a partway deadheading strategy is to be implemented, the beginning stop for the
new service should be determined. Partway deadheading strategy can reduce average waiting time of passengers of the peak
direction, while it increases passenger waiting time of the reverse direction and extra running cost of the deadheaded bus.
Therefore, the optimization of partway deadheading strategy should integrate the benefit of passengers of the peak and off-
peak directions and extra running cost of the deadheaded bus to determine the beginning stop of the new service of the part-
way deadheading operation.

The definition of variables used throughout the model formulation is as follow:

2.3.1. Definition of variables

M The total number of buses.
N The total number of stops.
VC Rated capacity of a standard bus.
rj Average passenger arrival rate at the stop j. Assume that passengers arrive randomly at a constant rate rj at the

stop j during peak periods.
qj Passenger alighting proportion at the stop j, which is a fixed constant computed by history data for the stop.bBi;j

The number of the passengers boarding the bus i at the stop j.bAi;j
The number of the passengers alighting from the bus i at the stop j.bLi;j
Departure load of the bus i from the stop j.bRi;j
The number of the passengers who are left by the bus i at the stop j and have to wait for the bus i + 1.

t̂a
i;j

Arrival time of the bus i at the stop j.

t̂s
i;j

Dwell times of the bus i at the stop j.
�tr

j�1!j Average running time between the stop j � 1 and j.

td
i;j

Departure time of the bus i from the stop j.

ĥi;j Headway between the buses i and i � 1 at the stop j, i.e., ĥi;j ¼ t̂d
i;j � t̂d

i�1;j.

Tshortest
h

The shortest running time from the destination terminal to the stop h at the peak direction (the shortest
running time can be computed with history data).

Cw Unit time values associated with waiting time of passenger.
Cr Unit cost associated with running time of bus.

2.3.2. Relation between passengers and bus operation
Assume running time between two adjacent stops can be achieved from history data. Thus, the arrival time of the bus i at

the stop j can be yielded as follow:

t̂a
i;j ¼ t̂d

i;j�1 þ �tr
j�1!j ð11Þ

When computing the departure time of the bus i from the stop j, the dwelling time of the bus at the stop should be esti-
mated first. Dwelling time of a bus is determined by the number of boarding or alighting passengers at the stop. The alighting
passenger of the bus i at the stop j can be computed as follow:bAi;j ¼ qj � bLi;j�1 ð12Þ

The boarding passengers include three parts: the passengers bRi�1;j left by the bus i � 1, the passengers ĝ�i;j arriving from the
bus i � 1 departing to the bus i arriving and the passengers ĝþi;j arriving during the dwelling time of the bus at the stop. Thus,
as the bus i arriving, the number of the passengers who expect to board the bus is equal to ðĝ�i;j þ bRi�1;jÞ at the stop j.

ĝ�i;j ¼ rj � ðt̂a
i;j � t̂d

i�1;jÞ ð13Þ

Assume that all boarding takes place at the front door and alighting takes place at the rear door. The estimated dwelling
time t̂ud

i;j for passenger boarding and alighting time is equal to the longer one between the total boarding time and the total
alighting time. That is,
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t̂ud
i;j ¼ max½�u� ðĝ�i;j þ bRi�1;jÞ; �d� bAm;j� ð14Þ

where �u and �d denote average times of per boarding and alighting passenger respectively.
Then, the number of the passengers ĝþi;j arriving during the bus i dwelling at the stop j can be formulated as follow.

ĝþi;j ¼ rj � t̂ud
i;j ð15Þ

Thus, according to the capacity of bus, the number of the boarding passengers bBi;j can be computed as follow.

bBi;j ¼
ĝ�i;j þ bRi�1;j þ ĝþi;j if ĝ�i;j þ bRi�1;j þ ĝþi;j 6 VC � ðbLi;j�1 � bAi;jÞ

VC � ðbLi;j�1 � bAi;jÞ otherwise

(
ð16Þ

Then, the load of the bus i departing from the stop j can be updated and the number of the left passengers by the bus can
also be yielded as follow.bLi;j ¼ bLi;j�1 þ bBi;j � bAi;j ð17Þ

bRi;j ¼ max½ĝ�i;j þ bRi�1;j þ ĝþi;j � bBi;j�1;0� ð18Þ

After achieving the number of the boarding passengers, the dwelling time of the bus i at the stop j can also be determined.

t̂s
i;j ¼ max½�u� bBi;j;

�d� bAi;j� ð19Þ

(a) History service reliability database 

(b) Reliability prediction using the k nearest neighbors 

Fig. 6. The reliability prediction based on k-NN method. (a) History service reliability database and (b) reliability prediction using the k nearest neighbors.
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Thus, substituting the arrival time and dwelling time of the bus i at the stop j in the following equation, the departure
time of the bus from the stop can be yielded.

t̂d
i;j ¼ t̂a

i;j þ t̂s
i;j ð20Þ

In addition, when a bus arrives at a stop and the preceding bus does not depart from it, we assume that the preceding bus
departs from the stop immediately as the current arriving.

2.3.3. Estimation of the location of the deadheaded bus
Assume that the deadheaded bus begins transit service at the peak direction of the route from the stop h. Tshortest

h is used to
denote the shortest running time from the destination terminal (the terminal N) to the stop h at the peak direction. Then, the
arrival time of the deadheaded bus i at the beginning stop h of the new transit service can be defined as follow.

t̂0ai;h ¼ t̂d
i;N þ Tshortest

h ð21Þ

where t̂0ai;h denotes the arrival time of the bus i from stop N to h.
As the deadheaded bus begins the new service, the bus will be inserted between two successive buses (e.g., v � 1 and v).

The bus v � 1 will be the latest bus that has reached or gone through the stop j, while the bus v will be the nearest bus that
has not reached the stop (Fig. 7). Furthermore, the arrival times of the buses v � 1 and v should satisfy the following
constrains.

t̂a
v ;h � t̂0ai;h < t̂a

v�1;h ð22Þ

2.3.4. Mathematical model
Partway deadheading strategy can reduce average passenger waiting time of the peak direction (denoted as the positive

benefit), while it also increase the additional passenger waiting time of the reserves direction and the extra running cost of
the deadheaded bus (denoted as negative benefit). Therefore, the objective of the optimization model for partway deadhead-
ing strategy is to achieve the trade-off between the benefits of two parts during the fleet service cycle. The fleet service cycle
means each bus in the fleet has completed its service cycle (i.e., the service cycle of a bus means a bus starting from the ori-
ginal terminal 1, going through the destination terminal N/2 and returning to the original terminal N). To simplify the model,
assume when a bus completes a service cycle, the no. of the bus is increased by M (e.g., when bus i � 1 finishes its transit
service at both direction and return to the terminal N, its bus No. is changed to M + i � 1).

Assume the current bus is i, when the bus M + i � 1 has returned to the original terminal N, it can be regarded that the
fleet has completed a cycle. Thus, the objective of the optimization model integrates the saving time cost of the passengers
of the whole route and the extra running cost of the deadheaded buses if the bus i was implemented the partway deadhead-
ing operation.

max F ¼ Cw � ðT� � TþÞ � Cr � Tshortest
h ð23Þ

where F denotes the total cost of transit system, T� is the total waiting time of passengers if the partway deadheading oper-
ation will not be implemented, and T+ is the total waiting time of passengers with the implementation of the partway dead-
heading operation. Cr � Tshortest

h is the extra running cost of the deadheaded buses.
The total waiting time of passengers without the partway deadheading operation (T�) is first computed. Then, when the

partway deadheading operation is implemented, the total waiting time of passengers (T+) is the time with respect to the new
bus queue.

2.3.4.1. Total waiting time of passengers without the partway deadheading operation (T�). If the partway deadheading operation
will not be implemented, each bus of the entire fleet provides regular transit service at both directions. Assume the bus
queue of the entire fleet is {i � 1, i, i + 1, . . . , M + i - 2}. Then, the total waiting time of the passengers waiting for the buses
i � 1 to i + M � 2 can be defined as follow.

Fig. 7. An example of the location of the deadheaded bus.
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T� ¼
XMþi�2

m¼i�1

XN

j¼1

bBm;j �
ĥm;j

2
þ bRm�1;j � ĥm;j

 !
ð24Þ

2.3.4.2. Total waiting time of passengers with the partway deadheading operation (T+). If implementing partway deadheading
operation, as the deadheaded bus begins the new service, the bus queue will be varied. Assume the current vehicle is bus
i, since the deadheaded bus i is inserted behind the bus v � 1, the bus queue will be {i � 1, i + 1, . . . , v, i, v + 1, . . . , M + i -
2}. Let i0 � 1 be the first bus (i.e. the initial bus i � 1), i0 be the bus i � 1, and do on, the bus queue can be renumbered as
{i0 � 1, i0, . . . , M + i0 � 2}. Thus, the total waiting time of the passengers can be computed if implementing partway deadhead-
ing operation.

Tþ ¼
XMþi0�2

m¼i’�1

XN

j¼1

bBm;j �
ĥm;j

2
þ bRm�1;j � ĥm;j

 !
ð25Þ

3. Solution algorithm

For the implementation of the partway deadheading strategy in the previous sections, a solution algorithm is presented to
assess service reliability of the route and to determine the beginning stop of the new service for the partway deadheading
strategy.

Step 1. Initialization
Determine the length of the rolling horizon (l), the threshold value of service reliability assessment ð/; kÞ of the route.

Step 2. Predict service reliability of the route
Step 2.1. Roll the horizon of the buses at each stop

As bus arrives at a stop, the oldest bus in the horizon is taken out and the current bus is inserted into the horizon.
Step 2.2. Compute the coefficient of variation of headways at each stop, according to Eq. (1).

Step 2.3. Compute the reliability of transit service Upeak
i ;, according to Eq. (5).

Step 2.4. Predict the reliability of the further transit service

if bUpeak
iþx < k� /goto Step 3; otherwise goto Step 5.

Step 3. Optimize the beginning stop for the new service of the partway deadheading strategy
Compute the average passenger arrival rate (rj), average running time ð�tr

j�1!jÞ and the shortest running time from the

destination terminal to each stop ðTshortest
h Þ.

Set SNo. = 1, where SNo.denotes the stop No.
Set Soptimal = 0, where Soptimal denotes the current optimal beginning stop for the new service.
Set Max = 0, where Max denotes the objective function corresponding to Soptimal.
Step 3.1. Terminating optimization of the beginning stop for the new service.

If Set SNo. > N/2, go to Step 4; Otherwise go to Step 3.2.
Step 3.2. Estimate the location of the deadheaded bus, i.e., find the preceding bus v � 1 and the following bus v of the
deadheaded bus.
Step 3.3. Compute the number of the left passengers at the stop h.
Step 3.4. Compute the benefit of the passengers at the peak direction due to the partway deadheading operation,
according to Eq. (25).
Step 3.5. Compute the additional waiting time of the passengers at the off-peak direction, according to Eq. (28).
Step 3.6. Compute the extra time bus running empty.
Step 3.7. Compute the objective function, according to Eq. (29).
Step 3.8. If F(SNo.) > Max, Max = F(SNo.) and Soptimal = SNo..
Step 3.9. SNo. = SNo. + 1, goto Step 3.1.

Step 4. Implement the partway deadheading strategy with Soptimal.
Step 5. Terminating check of the partway deadheading strategy operating;

If exceeding the maximum time, then stop; Otherwise, goto Step 2.

4. Numerical test

The partway deadheading strategy proposed in this study is tested with the data of the route number 23 in Dalian city of
China. The transit route No. 23 goes from suburb (the terminal 1) to city centre (the terminal 19) with total 19 stops and
14.5 km per direction (Fig. 8). The transit route is highly congested in the eastbound direction of the morning peak and
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the direction is also determined as the peak direction in this study. The headway and the travel speed during peak period are
2.5 min and about 12–18 km/h. The details of the route are shown in Fig. 8.

The test period is during the morning peak (07:00–08:30) of typical weekdays in this study. The bus operational data,
such as bus cycle times, passenger demands at stops, and traffic conditions on links, have been obtained from the analyzed
route (Yu et al., 2012; Yang et al., 2007). The unit waiting time values of passenger and the unit running time cost of operator
are set as 2.7 RMB/h and 1.5 RMB/h (Yu and Yang, 2009), respectively. The microscopic simulation model Paramics is applied
to simulate bus operations, which is expected to provide a fairly reliable environment for testing the proposed partway dead-
heading strategies. The data during the morning peak of 30 weekdays were generated to test the proposed methods through
the calibrated simulation model. Two third of the data were set to the history database used in the k-NN methods. The other
data were set to the test data that was used to validate the performances of the prediction method of the service reliability
and the partway deadheading strategy.

4.1. Model calibration

4.1.1. Length of the rolling horizon
Before the service reliability assessment of the route, the length of the rolling horizon of buses at stops should be deter-

mined, which can influence the accuracy of the assessment. To decide the rolling horizon, an examination is constructed
based on the data of a typical day. Fig. 9 shows that the reliabilities of each bus at the peak direction of the typical day with
various lengths of the rolling horizon.

It can be observed that the reliabilities of each transit service are fluctuated very badly, while the reliabilities are consis-
tent with the increase of the length of rolling horizon. Especially, when the length of the rolling horizon is from 5 to 7, the
reliabilities of each transit service are similar. This indicates that the increase of the length of the rolling horizon has little
significance to the computation of service irregularity when m = 5.Thus, considering the computation time, the length of the
rolling horizon is set to 5 in this study.

4.1.2. Parameters in the k-NN methods
k-NN methods have been documented while a large database is desirable for increasing the prediction accuracy. However,

the large sample size has significant implications on the timeliness of model execution (Smith et al., 2002). Considering the
timely feature of the real-time control strategies, the history database are divided into three parts according to each half
hour, i.e., 07:00–07:30, 07:30–08:00 and 08:00–08:30. This can decrease the search space and greatly save computation time
of the k-NN method. There are two parameters: the number of the input variables and the number of the nearest neighbor, in
k-NN method. To calibrate the parameters, an examination, where the reliability of the next transit service will be predicted
as each bus arriving at the terminal N, is constructed based on the data of a typical day. Fig. 10 shows the mean absolute
percentage error (MAPE) of the service reliability prediction of the k-NN methods with various parameters.

It can be found that the parameter sets {e = 4, k = 6} and {e = 5, k = 6} are the best ones. Furthermore, the methods with
more input variables (e.g., e = 4 or 5) outperform the ones with less input variables (e.g., e = 2 or 3). This can be attributed
that when the number of the input parameters is small, it will be more difficult to identify the system status. In addition, we
can find that the method with k = 6 is better than other methods for the service reliability prediction. Considering the pre-
diction accuracy and computation time, the parameter set {e = 4, k = 6} is adopted for the service reliability prediction in this
study.

Peak direction

The travel time =56min

The scheduled headway =2.5 min

The total passerages =5,810 persons

The speed of bus vehicles =12-18km/h

Fig. 8. Configurations of transit route 23 in Dalian city of China.
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4.1.3. The number of time steps of prediction
Since the deadheaded bus needs to consume some time to arriving at the beginning stop of the new service, we expect to

accurately predict the reliability of the further transit service, not just the reliability of the next transit service. Using the data
to calibrate the parameters of k-NN method, the performances of the prediction model with various time steps are compared.
Fig. 11 shows the prediction errors of the reliabilities of the second, forth, sixth and eighth transit service after the current
service.

Obviously, the prediction error is larger with the increase of the number of the time steps, especially when x = 6 and
x = 8. The prediction accuracy for the reliability of the next forth transit service is slightly worse than the one for the next
second transit service. Thus, the predicted reliability of the forth transit service after the current service is used to justify
whether the current bus should implement the partway deadheading operation or not.

4.1.4. Threshold value of service reliability of the route
The threshold / can control the frequency of partway deadheading operations. Large threshold brings more operations,

while small value reduces the frequency of the operations. To determine the suitable threshold value, the test data (the data
of 10 days) are used to construct an examination. In the examination, the reliabilities of the transit service are analyzed if the
total benefit of transit system is positive when the current bus implements the partway deadheading operation.

Fig. 9. The average service irregularity of the stop.

Fig. 10. The prediction results of the k-NN methods with various parameters.

Fig. 11. The prediction results of the reliabilities with different transit service after the current service.
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Fig. 12 shows the benefit of each partway deadheading operation under the different current and further transit service
reliability (i.e., the ith and i + 4th service) during the peak periods of 10 days, respectively.

From Fig. 12, we can find that the benefit of the partway deadheading operation is so random according to the current
reliability of transit service. That is because the transit operation environment has the characteristics of time-varying and
dynamic. Although the current operation status is subjected to little interference, the transit service in the future might turn
to be serious and unreliable. Therefore, it may be difficult to obtain satisfactory results, if the operator decides whether to
implement this partway deadheading strategy according to the current reliability. However, the benefit of partway dead-
heading operation shows higher correlations with the predicted reliability than with the current reliability. This indicates
it can probably yield large benefit if justifying whether to implement the partway deadheading operation based on the future
reliability of transit service. Furthermore, it can also be observed when the reliability is lower than 1.5, transit system can
achieve more benefit. Thus, the threshold of service reliability of the route is set to 1.5.

4.2. Results

Without considering the reliability justification, Fig. 13 shows the total benefit of transit system and the beginning stop of
the new service when each bus implements the partway deadheading operation based on the data of the typical day.

In general, the deadheaded bus can collect more passengers if it returns to the origin terminal at the peak direction and
begins transit service. However, it can be observed that the beginning stops of most partway deadheading operations are not
the original terminal, but the middle stops near the original terminal. This is because that the deadheaded bus needs to con-
sume some running time to reach the beginning stop for the new service and if returning to the original terminal it needs to
consume more running time. This can greatly increase the additional waiting cost of the passengers at the reverse direction
and the extra running cost of the deadheaded bus. This indicates that the proposed model is efficient to integrate the benefit
of the passengers in the two directions and the agency. In addition, during peak period, the implementation of partway dead-
heading operations for most buses except for the 1st, 2nd, 5th, 29th and 30th, can yield positive benefit for transit system
due to larger passenger demand.

Fig. 12. The reliabilities of the current and predicted transit service.

Fig. 13. The total benefit of transit system and the beginning stop with the partway deadheading.
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Then, to evaluate the performance of the proposed strategy, no control (NC), a simple partway deadheading strategy (S-
Deadheading), a partway deadheading strategy with current reliability-based justification (R-Deadheading) and the pro-
posed strategy (FR-Deadheading) are constructed using the same data sets to the proposed hybrid model. In S-Deadheading,
if the partway deadheading operation can bring positive benefit for transit system, the current bus will be implemented the
partway deadheading operation. However, to avoid frequent partway deadheading operations, successive partway dead-
heading operations are not admitted. The difference between S-Deadheading and R-Deadheading is the base justifying
whether to implement a partway deadheading operation or not. The former is based on the current reliability of transit
service, while the later is based the predicted reliability. Other parameters in R-Deadheading are the same as the ones in
FR-Deadheading. Under the same conditions, the four strategies are used to control the transit services of the test data.
The results are evaluated in terms of the average total cost of transit system during 10 peak periods, which are shown in
Fig. 14.

Obviously, the performance of the proposed strategy in this study is the best among the four strategies. The total cost
using our strategy is less than the other strategies by 11.8%, 10.1%, 6.6% respectively. The performance of the NC strategy
is the worst among four strategies due to no operation to remedy the unreliable service. As to the total cost, the performance
of the R-Deadheading strategy is slightly better than the one of the S-Deadheading strategy.

Then, the performances of three partway deadheading strategies are compared. The S-Deadheading and FR-Deadheading
strategies can bring less passenger cost than the R-Deadheading strategy. The extra bus running cost in the FR-Deadheading
strategy is the least and the one in S-Deadheading strategy is the largest among three partway deadheading strategies. Con-
sidering the total cost in three deadheading strategies, it is obvious that there are some invalid deadheading operations in
the S-Deadheading and R-Deadheading strategies, especially in the S-Deadheading strategy. This indicates that there is a
high risk of error dispatching if not justifying transit service statement during real-time control. This can yield the expected
effort of real-time control strategies and also waste the operation resource.

5. Conclusions

Our study has been motivated by real-life applications in China, where most transit routes have to serve large and imbal-
anced passengers. To improve transit service at the peak direction, it is a usual way that buses that should serve at the off-
peak direction are transferred to the service at the peak direction.

In this study, a partway deadheading strategy was proposed to study when and how to dispatch the buses at the off-peak
direction to the transit service of the peak direction of the route. Compared with other station-skipping strategies, the part-
way deadheading strategy can make full use of the resources of transit fleet, especially the buses serving at the off-peak
direction. Therefore, this strategy is more effective to the routes which need to transport large and imbalanced passengers
on both directions. In addition, this strategy is implemented at the origin terminal of the off-peak direction, so comparing to
other stop-skipping strategies it can successfully avoid the inconvenience to the passengers on board. The partway dead-
headed strategy is therefore much easier to be implemented.

However, the partway deadheaded strategy needs some additional cost (i.e., the deadheaded bus runs empty to a stop of
the peak direction and restart its service). To avoid invalid partway deadheading operation, the reliability of the further tran-
sit service was firstly assessed based on the current and recent service reliabilities. Only when further service was unreliable,
the partway deadheading operation should be implemented. For determining the beginning stop for the new service of the
deadheaded bus, an optimization model aiming to maximize the benefit of transit system was presented. To address service
reliability assessment and partway deadheading operation optimization, a heuristic algorithm has been defined and
implemented.

Then, the partway deadheading strategy proposed in this study was tested with the data from a real-life route in Dalian city
of China. The length of rolling horizon and the threshold value of service reliability were analyzed. Furthermore, the perfor-
mance of the partway deadheading strategy was validated and the results showed that the proposed strategy can yield the best

Fig. 14. The average total cost of transit system with four strategies.
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performance compared to other partway deadheading strategies and no control. In addition, the heuristic algorithm was suit-
able for online application due to its simplicity in computation, whose running time on a PC was no more than a few seconds.
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a b s t r a c t

Provision of accurate bus arrival information is vital to passengers for reducing their anx-
ieties and waiting times at bus stop. This paper proposes models to predict bus arrival
times at the same bus stop but with different routes. In the proposed models, bus running
times of multiple routes are used for predicting the bus arrival time of each of these bus
routes. Several methods, which include support vector machine (SVM), artificial neural
network (ANN), k nearest neighbours algorithm (k-NN) and linear regression (LR), are
adopted for the bus arrival time prediction. Observation surveys are conducted to collect
bus running and arrival time data for validation of the proposed models. The results show
that the proposed models are more accurate than the models based on the bus running
times of single route. Moreover, it is found that the SVM model performs the best among
the four proposed models for predicting the bus arrival times at bus stop with multiple
routes.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Backgrounds

Many applications of information systems and technologies, such as automatic vehicle location (AVL) or identification
(AVI) systems and automatic passenger counters (APC), are now receiving increasing attentions in transportation manage-
ment. They are considered as the key components of intelligent transportation systems (ITS). Recently, transit agencies also
realize the operational benefits of ITS-related technology implementation. Based on these advanced technologies, transit
agencies can acquire real-time bus information to reduce passenger journey time and improve management/service level.
Thus, there is a growing interest in providing real-time bus arrival information for passengers using emerging electronic
information and communication technologies. The availability of real-time bus information can help passengers efficiently
schedule their departure time and make smart choices for their travel.

In practice particularly in transit-oriented cities like Hong Kong, it is very common to have several bus routes using the
same bus stop in urban areas. In the bus stop with multiple routes, passengers would have several choices (different bus
routes) to reach their destinations. Real-time bus information available at stop can be very helpful to passengers if they
can know which bus will arrive first. Thus, there is a need for bus information at stop with multiple routes particularly in
high density populated cities (e.g., Hong Kong) with large bus passenger demands. For example, there are nineteen bus
routes using two bus stops (i.e. two separate bus bays and some stop boards at each bus bay) at the Cross Harbour Tunnel
(North bound) in Hong Kong. Among these bus routes, there are some common lines passing several major urban areas on
. All rights reserved.
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Hong Kong Island. There is always a long queue of passengers waiting for buses at the bus stop board of each route. There-
fore, given the bus arrival time information at the bus stop with multiple routes, passengers who have multiple choices can
choose the potentially suitable route for their journeys. With this real-time bus arrival time information, passengers can
greatly reduce their waiting times and the efficiency of bus services can significantly be improved particularly at the major
bus stops with high volume of passengers transferring from railway to bus modes.

Fig. 1 shows an example for illustrating the effort on providing bus arrival time information at bus stop with multiple
routes. In the example, a passenger expects to go from Stop A to Stop B where there are three bus routes, route nos. 101,
102 and 103. The passenger can choose any one of these three bus routes to his destination at Stop B. If the passenger knows
the bus arrival times of the next buses of the three bus routes at Stop A (e.g., 09:05, 09:04 and 09:02, respectively), he/she
will wait for the next bus of the route no. 103 rather than the other two routes. Thus, his/her waiting time will be reduced.

Passengers, in general, are more interested in knowing the predicted arrival times of the following buses rather than the
current locations of the buses. Thus, the accuracy of the prediction algorithm is very important in a successful bus informa-
tion system. However, accurate prediction of bus arrival time is very difficult due to many stochastic variables involved (e.g.,
traffic conditions). Therefore, the deployment of bus arrival time prediction model is a challenging task.

1.2. Literature review

In the past decade, various sophisticated techniques and algorithms have been developed to predict bus travel time or
arrival time by using AVL and/or APC data. These methods can be categorized as: artificial neural network (ANN) or Support
vector machine (SVM) (Ding and Chien, 2000; Chien et al., 2002; Chen et al., 2004; Jeong and Rilett, 2004; van Lint et al.,
2005; Vlahogianni et al., 2005; van Hinsbergen et al., 2009; Yu et al., 2006, 2010a,b), Non-parametric regression (NPR) model
(Smith et al., 2002; Chang et al., 2010; Park et al., 2007; Zhang and Rice, 2003; You and Kim, 2000; Vlahogianni et al., 2006)
and Kalman filter model (Wall and Dailey, 1999; Chien and Kuchipudi, 2003; Shalaby and Farhan, 2004; Chen et al., 2004; Yu
et al., 2010a).

1.2.1. Artificial neural network/support vector machine models
ANN is motivated by emulating the intelligent data processing ability of human brains. ANN has been reported to be espe-

cially useful for finding solutions for complex non-linear problems. Chien et al. (2002) proposed two ANN-based models: the
link-based ANN model and the stop-based ANN model, to predict bus arrival time. An adaptive algorithm was also developed
to improve the performances of the ANN-based models. Their results showed that the link-based ANN model outperformed
the stop-based ANN model for the prediction with a relatively small number of intersections. The results also indicated that
the adaptive algorithm can improve the performances of the ANN-based models. Chen et al. (2004) proposed a dynamic algo-
rithm that integrated the ANN model and a Kalman filter-based algorithm. Jeong and Rilett (2004) compared the perfor-
mances of several methods: the historical data based model, the regression models, and the ANN model, for bus arrival
time prediction. Their results showed that the ANN model outperformed the historical data based model and the regression
model in terms of prediction accuracy. Van Lint et al. (2005) presented a freeway travel time prediction framework which
combined state-space neural network with preprocessing strategies based on imputation. Their results indicated that a com-
bination of these imputation procedures and the proposed model could be implemented a real-time application. Vlahogianni
et al. (2005) presented a multilayered structural optimization strategy based on genetic algorithm, which was applied to
both univariate and multivariate traffic flow data to evaluate the performance of the developed network. van Hinsbergen
et al. (2009) used Bayesian inference theory to combine neural networks in a committee using. The proposed method had
an evidence factor to act as a criterion of stopping the training and a tool to determine different neural networks. Their re-
sults showed that the proposed approach had a much higher accuracy.

SVM is a very specific type of learning algorithm characterized by the capacity control of the decision function, the use of
the kernel functions, and the sparse solution (Cristianini and Shawe-Taylor, 2000; Vapnik, 1999, 2000). Yu et al. (2006,
2010b) developed the SVM-based models to predict bus arrival time. In the models, travel speeds of the preceding buses
of the same bus route were used to estimate traffic conditions. Their results showed that the SVM-based models outper-
formed the ANN and historic mean prediction models, and SVM seemed to be a powerful alternative for bus arrival time
prediction. With versatile parallel distributed structures and adaptive learning processes, ANN and SVM have recently been
gaining popularity in bus travel/arrival time prediction.
9:02

9:05
9:04

102 103101

103 102 101103 102 101

102 103101

Bus route nos.

Stop A Stop B

Fig. 1. An example for bus arrival time information at bus stop with multiple routes.
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1.2.2. Non-parametric regression models
NPR is a relatively simple method for prediction without the need to estimate parameters. The NPR models are therefore

more suitable for real-time applications. Zhang and Rice (2003) proposed a method to predict short-term freeway travel
times using a linear model in which the coefficients varied as smooth functions of the departure time changed. Several vari-
eties of the prediction procedures were presented and the results were encouraging. You and Kim (2000) developed a hybrid
travel time forecasting model based on non-parametric regression for predicting link travel times in congested road
networks.

Recently, k nearest neighbour (k-NN) is one of the most popular NPR methods, which has been widely applied in many
fields (Smith et al., 2002; Chan et al., 2009; Tam and Lam, 2009). Chang et al. (2010) developed a bus travel time prediction
model using k-NN. Their results showed that k-NN was an effective method to estimate bus travel time according to the pre-
diction accuracy and computing time. Park et al. (2007) applied a non-parametric regression model for travel time predic-
tion. Their model was implemented and evaluated using real-time transit data. k-NN methods have also been documented
while a large database is desirable for increasing the prediction accuracy. However, the large sample size has significant
implications on the timeliness of model execution (Smith et al., 2002).
1.2.3. Kalman filter models
Kalman filter is an efficient recursive procedure that estimates the future states of dependent variables. It is origi-

nated from the state-space representations in modern control theory. Chien and Kuchipudi (2003) developed a path-
based model and a link-based model using Kalman filter to predict bus travel times. Their results showed that the
link-based model would be more sensitive to travel time increment of the link with congestion or incident. Shalaby
and Farhan (2004) discovered that the Kalman filter-based model outperformed the regression and neural network mod-
els in terms of accuracy. Cathey and Dailey (2003) proposed a prediction method for bus arrival/departure time which
included three components, e.g., a track, a filter and a predictor. In the filter, Kalman filter was used to estimate the
vehicle dynamical state. Chen et al. (2004) developed an enhanced algorithm based on Kalman filter to predict bus ar-
rival time. Their results showed that the enhanced algorithm was effective for bus arrival time prediction compared with
the standard ANN-based models.

In summary, many researches have been conducted on forecasting bus travel/arrival time for a single bus route, while few
studies have investigated bus travel/arrival time prediction for multiple bus routes. In most previous researches, some fac-
tors related to road traffic (e.g., traffic speed and volume) were used to model bus travel/arrival time prediction. However,
bus running is greatly different from that of other vehicles due to bus lane, bus stop and so on. To solve the problems, Yu
et al. (2006, 2010b) applied the bus running times (speeds) of the preceding buses to predict the arrival time of the next
bus. However, in their researches, the bus running times (speeds) of the same route were used to model the prediction.
For the route segment passing through several bus routes, the bus arrival time prediction model can provide better predic-
tion accuracy by integration of bus information of multiple routes.
1.3. Contributions

In general, bus operation is different for the buses arriving at stops with multiple routes or single route. Bus arrival time at
stops with single route is mainly affected by traffic conditions between stops. However, besides traffic condition, bus arrival
time at stops with multiple routes would also be influenced by buses of other bus routes. For example, limited capacity of
bus stop may cause buses queue up at the bus stop. As a result, bus arrival delays would be increased. This is very common in
urban areas of transit-oriented cities like Hong Kong, particularly during peak periods.

As to the predictions for single route or multiple routes, there is some difference in the development of model. Fig. 2
shows the difference between the predictions for single route and multiple routes. When the target bus n of the bus route
no 101 arrives at Location A, assume the buses k,. . ., k + l,. . ., k + d, have gone through Bus Stop, i.e., the buses are the pre-
ceding buses. Since the running times of the preceding buses between Location A and Bus Stop can be obtained, the running
times are used to estimate traffic condition and to construct the prediction model. For the prediction for single route, only
the running time of bus (e.g., the bus k + l) on the same route is used to model the prediction. Thus, the performance of the
Fig. 2. The difference between the predictions of single route and multiple routes.
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single route prediction model greatly relies on the timeliness and accuracy of the information of the preceding buses on the
same route. However, except for buses on the same route, the bus information from other routes is also used for the multiple
route prediction model. Compared with the bus information of the same route, multi-dimension bus information from multi-
ple routes can provide more benefit (e.g., timeliness and reliability of the information), which will certainly improve predic-
tion accuracy.

This paper seeks to make two contributions to the literature. Firstly, it attempts to develop the models to predict bus ar-
rival time at the same bus stop but with multiple routes using real-world data. It is expected that the anxieties and waiting
times of passengers can be reduced if passengers know when the next buses of multiple routes arrive at the bus stop. Bus
running times of different routes are considered in the proposed models for predicting the bus arrival time. Secondly, the
performances of several prediction methods, SVM, ANN, k-NN and linear regression (LR), are assessed and compared for fore-
casting bus running time with multiple routes. The performance comparison of several models can provide valuable insight
for researchers as well as practitioners.

The structure of this paper is organized as follows: Section 2 provides the formulation of four proposed models for pre-
dicting bus arrival time at bus stop with multiple routes; Section 3 presents a case study together with results and analysis
including performance evaluation of the four proposed models; and lastly, the conclusions are given in Section 4 together
with suggestions for further study.

2. Methodologies

2.1. Prediction framework

Bus arrival time prediction at bus stop with multiple routes can be described in the following way: Given the bus arrival
time of any bus route at a location, it is to predict the bus arrival time at the bus stop with multiple routes. Fig. 3 illustrates
an example for the framework of the prediction in this study. When a bus (n) of any bus route (l) arrives at the Location A, the
bus arrival time (Ta

l;n) can be recorded by some traffic data collection technologies (such as AVI). Then, the running time
(̂trunning

l;n ) between the stop and the Location A is predicted by some methods. According to the arrival time of the bus at
the Location A, the bus arrival time (T̂s

l;n) at the stop with multiple routes can be determined.
T̂s
l;n ¼ Ta

l;n þ t̂running
l;n ð1Þ
To predict bus running time in an accurate and timely manner, it is essential to determine the appropriate factors to esti-
mate traffic conditions. Yu et al. (2006, 2010b) suggested that the running time(s) of the preceding bus(es) that has(ve) just
reached the stop can be used to reflect the traffic conditions. Furthermore, they also pointed out the weighted average run-
ning times of several preceding buses could reduce the effect of accidents on the preceding buses. However, in the researches
by Yu et al. (2006, 2010b), the bus running times of only the same bus route were applied to estimate traffic conditions. In
fact, if integrating bus running times of different bus routes, the estimation accuracy of traffic conditions can be improved. In
general, the most up-to-minute data can provide most reliable information for the prediction. Therefore, in order to take into
account the timeliness of the bus running times of the preceding buses, the time headway between the target bus and the
last preceding bus that has just reached the stop is considered in the proposed models.

For the sake of simplicity, ‘‘the preceding bus(es)’’ denotes the last bus(es) that has(ve) just reached the stop in the fol-
lowing sections. Assuming that n represents the target bus at the Location A, l represents the route no. of the bus n and L
represents the set of bus routes. The factors considered in this study can be illustrated as follows.

(a) tI
L;n is the time headway between the target bus and the last preceding bus of any route among the route set L. The last

preceding bus may be the same bus route or different bus route with the target bus. Thus, tI
L;n can be obtained by the

following equation.
tI
L;n ¼ Ta

l;n � Ta
L;k ð2Þ
Fig. 3. An example for the prediction framework.
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where Ta
l;n represents the arrival time of the bus (n) of the bus route no. l at Location A. The bus k represents the last

preceding bus of any route among the route set L. Ta
L;k represents the arrival time of the bus (k) at Location A.

(b) ti
l;n is the time headway between the target bus and the last preceding bus of the same route no. l. Fig. 4 illustrates the

difference between the two variables, tI
L;n and ti

l;n.
ti
l;n ¼ Ta

l;n � Ta
l;kþl ð3Þ
where the bus k + l represents the last preceding bus of the same bus route (l).
(c) �tr

L;n is the weighted average running time of several preceding buses (e.g., the bus k,. . ., k + l,. . ., k + d) of any routes
among the route set L. In general, the last preceding bus to the target bus will contribute more to the weighted average
running time than the further ones. A simple weighted method is to give each preceding bus a weight of the inverse of
the time headway between the preceding bus and the target bus. Thus, �tr

L;n can be attained by the following equations.
�tr
L;n ¼

Xd

j¼1

1=ðTa
l;n � Ta

L;jÞ
C

ðtr
L;jÞ ð4Þ
C ¼
Xd

j¼1

1=ðTa
l;n � Ta

L;jÞ ð5Þ
where, tr
L;j is the running time between Location A and the stop of the jth preceding bus. C is the sum of the weight of

each preceding bus. d is the prediction horizon that is the number of the selected preceding buses.
(d) tr

l;n is the running time of the preceding bus (e.g., the bus k + l in Fig. 3) of the same bus route No. l.
tr
l;n ¼ Ts

l;kþl � Ta
l;kþl ð6Þ
where Ts
l;kþl is the arrival time of the bus (k + l) of the route No. l at the stop.

If t̂running
l;n represents the prediction of bus running time between Location A and the stop, the prediction model for bus

running times aims to generalize the relationship of the following form.
t̂running
l;n ¼ f ðtI

L;n; t
i
l;n;

�tr
L;n; t

r
l;nÞ ð7Þ
To develop the bus running time prediction model, several techniques are employed in this study. With versatile parallel
distributed structures and adaptive learning processes, ANN and SVM appear to be the suitable approaches for bus running
prediction (Ding and Chien, 2000; Chien et al., 2002; Yu et al., 2006, 2010b). Thus, ANN and SVM are used to model bus run-
ning time prediction in this study. In addition, as simple and effective regression techniques, both k-NN and LR are also used
for comparison.

2.2. Support vector machine models

SVM is a type of learning algorithms based on statistical learning theory, which can be adjusted to map the input–output
relationship for the non-linear system. In addition, the solution of SVM is always unique and globally optimal since training
SVM is equivalent to solving a linearly constrained quadratic programming problem. Therefore, SVM shows the strong resis-
tance to the over-fitting problem and the high generalization performance. It is mainly because SVM can construct a map-
ping from one-dimensional input vector into high-dimensional space by the use of reproducing kernels. Here, Fig. 5 shows
that the SVM-based model for the prediction of the bus arrival time at the stop with multiple routes.

2.3. Artificial neural network

ANN is a mathematical model by simulating the neural structure of the human brain. The ANN processes information by
means of interaction between many neurons and the different links between neurons have been associated with weights.
Based on the highly interconnected neural computing elements, ANN has the ability to model complex relationships
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between inputs and outputs to find patterns in data. ANN includes two working phases, the learning phase and the recalling
phase. During the learning phase, learning means using a set of observations are commonly used as a training signal in input
and output layers. The recalling phase is performed by one pass using the weight obtained in the learning phase. ANN with
three layers is chosen in this study as it is generally easy to use and can approximate almost any input/output relationships.
The fully connected multilayer feed forward neural network with a back propagation (BP) algorithm has been applied suc-
cessfully to deal with complex transportation systems (Huang and Ran, 2003). Hence, the neural network used to predict bus
running time described as Fig. 6 in this study.

2.4. k nearest neighbours algorithm

k-NN is a method for classifying objects based on closest observations in a feature space. k-NN method is one of the sim-
plest machine learning algorithms. In k-NN method, the Euclidean distance is usually used to determine the distance be-
tween the input state and the historical data in the feature space. On the basis of the Euclidean distance, the k nearest
neighbours with the least distance to the input state can be determined. To weight the contributions of each neighbour, a
common distance-based scheme is adopted to compute the weight of each neighbour. The forecasts can then be obtained
by taking the weighted average of the observations from the k nearest neighbours.

In traditional k-NN method, standard Euclidean distance is used to match the k nearest neighbours in the feature space.
This means that each independent variable has the same importance to the input state. For the prediction of bus running
time, the equal weight of the independent variables is unreasonable. In this study, a weighed distance (dj) is introduced
to assign higher weight to the more important independent variable.
t̂running
l;n ¼

Xk

j¼1

1=dj

D
ðtr

L;jÞ ð8Þ

dj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1 � ðtI

L;n � tI
L;kÞ

2 þ k2 � ðti
l;n � ti

l;kÞ
2 þ k3 � ð�tr

L;n � �tr
L;kÞ

2 þ k1 � ðtr
l;n � tr

l;kÞ
2

k1 þ k2 þ k3 þ k4

s
ð9Þ

D ¼
Xk

j¼1

1
dj
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Fig. 6. Structure of the ANN model for the bus arrival time at the stop with multiple routes.
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where dj represents the weighted distance between the jth nearest neighbour and the input state. D represents the sum of
the weighted distance of the k nearest neighbours. k1, k2, k3 and k4 represent the weights of the variables. The values of k1, k2,
k3 and k4 are equal to the correlation coefficients between each independent variable and the dependent variable in this
study.

2.5. Linear regression

Linear regression (LR) is the first type of regression analysis and used extensively in practical applications. For bus run-
ning time prediction, linear regression method is to model the relationship between the estimated bus running time (depen-
dent variable) and the impact factors (independent variables).

Because the relationship between the estimated bus running time and the information of the preceding buses is very
sophisticated, linear regression is extended with some interaction to make LR a more valid comparison with other models
in this study. Here, the logarithm of the data set ft̂running

l;n : tI
L;n; t

i
l;n;

�tr
L;n; t

r
l;ng is taken, and then a new data set flnð̂trunning

l;n Þ :

lnðtI
L;nÞ; lnðti

l;nÞ; lnð�tr
L;nÞ; lnðtr

l;nÞg is obtained. For the bus arrival time of the stop with multiple routes, linear regression model
assumes that the relationship between the dependent variable and the independent variables (after the logarithm transfor-
mation) is approximately linear. Then, the approximate relationship is modeled as follow:
lnð̂trunning
l;n Þ ¼ b1 � lnðtI

L;nÞ þ b2 � lnðti
l;nÞ þ b3 � lnð�tr

L;nÞ þ b4 � lnðtr
l;nÞ ð11Þ
where, b1, b2, b3 and b4 are coefficients that are related to the effects of impact factors on bus running time.

3. Case study

In this section, the proposed several models for predicting bus arrival time at bus stop with multiple routes have been
evaluated by the real-world data in Hong Kong. Hong Kong has a highly developed and sophisticated bus route network that
comprises about 700 bus routes. Over 90% of the daily journeys are on public transport, making it the highest rate in the
world. In Hong Kong, real-time travel information system (RTIS) provides area-wide traffic information in the whole network
(Tam and Lam, 2008). In RTIS, real-time traffic data (Autotoll tag records) are collected by AVI technology. The Autotoll tag
records are initially used for electronic toll collection in Hong Kong. Almost all the buses have been installed with Autotoll
tags for toll collection automatically.

Bus stop near the entrance of the Cross Harbour Tunnel (CHT) (North bound) in Kowloon Central urban area is selected for
testing the proposed models. This bus stop is chosen because there are many bus routes with large passenger demands on
harbour crossing every day. According to the locations of Autotoll tag readers, two directions, the west direction from Chat-
ham Road North (CRN) to the CHT and the east direction from Ping Chi Street (PCS) to the CHT, are chosen. The locations of
the bus stop near the CHT and the Autotoll tag readers are illustrated in Fig. 7, respectively. There are eight bus routes, oper-
ating along the west direction (through CRN), which include route nos. 102, 103, 104, 110, 112, 117, 118 and 171. Bus routes,
operating along the east direction (through PCS), include route nos. 101, 107, 108, 109, 111 and 116. The distances from CRN
and PCS to the CHT bus stop are about 0.62 km and 0.72 km, respectively.

3.1. Performance measures

The prediction results are evaluated in terms of the performances of three measures; namely, the mean absolute error
(MAEl), the mean absolute percentage error (MAPEl) and the root mean square error (RMSEl) of the route no. l. The three
terms can judge the difference between the observed and the predicted running time in different aspects.
MAEl ¼
P
jtrunning

l;n � t̂running
l;n j

N
ð12Þ

MAPEl ¼
1
N

X jtrunning
l;n � t̂running

l;n j
trunning

l;n

� 100% ð13Þ

RMSEl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðtrunning

l;n � t̂running
l;n Þ2

N � 1

s
ð14Þ
where trunning
l;n is the observed running time of the bus n of the route no. l. t̂running

l;n is the predicted running time of the bus n of
the route no. l. N is the number of the buses which have been observed.

3.2. Data collection and processing

To obtain the actual bus running and arrival time data, the video surveys near the CHT bus stop have been carried out in
typical weekdays on 11–12 May 2010 (Tuesday to Wednesday) and 8 June 2010 (Tuesday) during the morning peak
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(08:00–10:00). In the surveys, we have recorded the route no. and license plate of each bus passing through the CHT bus
stop. Then, by a manual license plate matching with the Autotoll tags records, the actual bus arrival time at the CHT bus stop
and the time passing through the Autotoll tag readers (CRN and PCS) can be acquired. The data recorded by the Autotoll tag
readers at the toll-booths of the CHT have been used to check the license plate reading and the time.

A data filtering algorithm (Tam and Lam, 2008) was then applied to the observations collected from the surveys in order
to filter out the outliers. The numbers of the valid observations on the 3 days are 237, 228 and 224, respectively. We divide
these routes into two groups according to the different directions (CRN and PCS to CHT stop). Table 1 shows the number of
the valid observations of each route at each day, and the main descriptive statistics for the collected travel time. From Table
1, the average bus travel time of the west direction (from CRN to the CHT bus stop) is obviously more than that of the east
direction (from PCS to the CHT bus stop). The bus running times of the east direction varied from 170 to 485s and the average
time is around 291s. The bus running times of the west direction are from 275 to 662s and the average time is around 449s.
RMSEs of the east and west directions are 57.5 and 67.3s, respectively.

3.3. Model identifications

Before model identifications, the parameter d of the weighted average running time should be determined. By sensitivity
tests, bus running times of three preceding buses are used to calculate the weighted average running time in this study, i.e.,
d = 3. In model identifications, the observations are first classified by the bus route no. and the inputs of the prediction mod-
els are computed. Then, the observations on 11 May 2010 are set aside as testing data. The observations on 12 May and 8
June 2010 are selected as training data to calibrate the prediction models. To have the same basis of comparison, the same
training and verification sets are used for all models.



Table 1
Sample sizes of each route and descriptive statistics for the collected data.

Route no. Sample sizes (vehicle) Descriptive statistics

11-May 12-May 8-June Min (s) Max (s) Ave (s) RMSE

PCS–CHT bus stop 101 32 29 26 197 424 300.40 61.29
107 13 12 16 171 485 307.63 68.34
108 11 9 8 229 436 292.72 45.43
109 10 9 10 193 409 267.62 56.61
111 29 30 34 170 456 291.58 58.46
116 23 22 21 176 432 287.90 55.15

CRN–CHT bus stop 102 20 17 15 327 662 455.14 77.82
103 11 8 8 360 584 442.62 60.22
104 27 30 29 315 621 432.40 61.01
110 7 8 6 369 616 472.39 72.52
112 14 16 12 302 629 448.73 70.85
117 5 6 7 352 562 442.06 63.98
118 18 14 17 275 637 457.60 76.94
171 17 18 15 308 639 438.43 66.89

Table 2
SVM and ANN models with different input parameters.

Model Input parameters Average MAE
(s)

Bus time interval among
the route set (tI

L;n)
Bus time interval of the
same route ðti

l;nÞ
Weighted average bus running time
among the route set (�tr

L;n)
Bus running time of the
same route (tr

l;n)
SVM ANN

1
p p p

32.82 34.34
2

p p p
33.37 38.69

3
p p p

34.34 36.34
4

p p p
35.21 37.01

5
p p p p

30.39 35.02
6

p p
37.76 42.22
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3.3.1. Support vector machine models
The previous researches (Yu et al., 2006, 2010b) suggested that radial basis function (RBF) kernel was efficient for bus

running time prediction. Thus, RBF kernel function is used for the SVM model in this study. To determine the inputs of
the SVM model, sensitivity tests have been conducted. The SVM models with different input variables listed in Table 2 have
been calibrated based on the data collected. Table 2 also showed that the average MAE of the prediction for all the routes
using the SVM models with different parameters. The prediction errors of each route are shown in Fig. 8.

The models 1–5 integrate bus information of multiple routes to predict the bus arrival time at the bus stop. The model 6 is
a standard method using bus information of a single route for the prediction. Obviously, the performance of the single route
prediction model is the worst among the six models. This indicates that integrating bus information of multiple routes can
improve the accuracy of the arrival time prediction at the bus stop with multiple routes. It is mainly because that bus infor-
mation of multiple routes can reduce the effect of accidents on the preceding buses that may be the same or different route
with the target bus. Furthermore, Fig. 8 also shows that the SVM model 5 can almost provide the best prediction accuracy for
each route. Thus, all the four variables tI

L;n; t
i
l;n;

�tr
L;n; t

r
l;n are considered as the inputs of the SVM model in this study.

Before applying SVM, there are two parameters, C and e, which are first determined. Parameter C is to determine the
trade-off between the model complexity and the degree in the optimization equation. Parameter e controls the width of
the e-insensitive zone which is used to fit the training data. Referring to the application of bus running time prediction from
Yu et al. (2006, 2010b), it is recommended to the constraints of the two parameters which respectively attribute to the range
C 2 [2�5, 25] and e 2 [0.1, 0.3].

As identifying the parameters in SVM, grid-search is used to pick up the optimal parameter values. Thus, for the bus run-
ning time prediction, the two parameters (C, e) are selected as (2, 0.1).
3.3.2. Artificial neural network
A standard three-layer ANN is used to construct the prediction model for bus running time in this study. Similar to the

SVM model, the input parameters of the ANN model are determined based on the results of the sensitivity tests. The com-
binations of input parameters of the ANN models are the same as the ones of the sensitivity tests of the SVM model. The ANN
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models with different input parameters shown in Table 2 have also been trained by the BP algorithm. Fig. 9 shows the pre-
diction errors using the six ANN models with different input parameters.

Similar to the comparison of the SVM models, the prediction error of the ANN model 6 (the single route prediction model)
is the largest among the six ANN models. When comparing the average MAEs of the five ANN models (models 1 to 5) with
bus information of multiple routes in Table 2, the ANN model 1 is the best model. However, it can also be observed from
Table 2 and Fig. 9 that the prediction errors of the ANN models 1 and 5 are almost the same. To be consistence with the
SVM model, the ANN model 5 with ftI

L;n; t
i
l;n;

�tr
L;n; t

r
l;ng is used for bus running time prediction in this study.

After determining the inputs of the ANN model, a scaled conjugate gradient algorithm (Moller, 1993) is used to train the
ANN model. The number of hidden neurons is attained as five in this study. Thus, the final ANN model in this study is the
ANN model with three-layer and five hidden neurons for bus running time prediction.

3.3.3. k nearest neighbours algorithm
In the k-NN model, the k nearest matches are determined among all the observations by the weighted distances. When

computing the weighted distances, the parameters k1, k2, k3 and k4 are decided by the correlation coefficient of each input
variable with the bus running time. In this study, k1 = 0.268, k2 = 0.117, k3 = 0.217 and k4 = 0.348, are calibrated respectively.
To investigate the suitable value of k for the k-NN method in this study, sensitivity tests with different values of k in the
range of 1–4 have been conducted. Fig. 10 shows that the prediction errors of the k-NN models with different value of k.
Obviously, when k is set as 1, the prediction error is the largest among the four models. It is because that traffic conditions
change rapidly and dynamically and accidents on the preceding bus will greatly affect the prediction accuracy. When k
reaches 3 or 4, the prediction performance of the model is relatively better than that of the model with k = 1 or k = 2. It
was also found that the difference of the prediction errors between the model with k = 3 or k = 4 is about 3%. Considering
the complex of computation and the prediction accuracy together, k = 3 is selected for the k-NN model in this study.

3.3.4. Linear regression
Based on the preliminary analysis, it was found that time headways between the target bus and the last preceding bus of

any route and of the same route (tI
L;n and ti

l;n) are insignificant at 5% level for almost all the routes. Thus, these two variables
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Table 3
Coefficients of the independent variables in the LR model.

Route no. lnð�tr
L;nÞ lnðtr

l;nÞ R2 Route No. lnð�tr
L;nÞ lnðtr

l;nÞ R2

101 �0.210 1.222 0.82 103 �0.151 1.158 0.69
107 0.205 0.810* 0.74 104 0.353 0.646** 0.83
108 0.492 0.506 0.73 110 0.310 0.701** 0.79
109 1.122** �0.123 0.82 112 0.269 0.735* 0.71
111 0.156 0.851* 0.67 117 0.446 0.557 0.84
116 0.143 0.856 0.77 118 0.176 0.831* 0.70
102 0.046 0.968* 0.81 171 0.073 0.931 0.83

* Significant at 0.05 level.
** Significant at 0.01 level.
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were not adopted in the LR model. The coefficients of the independent variables in the resultant LR model for each of the bus
route are shown in Table 3.

There is some difference in the coefficients of the two input variables in Table 3. lnðtr
l;nÞ shows higher influence on the

predicted bus running time in most of the bus routes except the route no 109. This indicates that the running time of the
preceding bus of the same route can provide more reliable information for the prediction. Furthermore, lnðtr

l;nÞ is significant
at 5% level or 1% level for the route nos. 107, 111, 102, 104, 110, 112 and 118, while lnð�tr

L;nÞ is significant for the route No. 109.
3.4. Validation results

In this section, the bus arrival time at the CHT bus stop with multiple routes are forecasted by the SVM, ANN, k-NN and LR
models. The average value of the MAE, the MAPE and the RMSE of the four models for all the bus routes are summarized in
Fig. 11 and details are attached in Appendix A.
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Fig. 12. Predictability of the four models on bus running time.

Table 4
The correlation coefficients (r) and the t-values for the four methods.

SVM ANN k-NN LR

r 0.9 0.87 0.85 0.84
t-value �2.2 �1.98 1.57 1.54
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Fig. 11 shows the comparison of the performance among four different methods from MAE, MAPE and RMSE, respectively.
In Fig. 11, the horizontal axis is divided into two directions: PCS–CHT (the east direction) and CRN–CHT (the west direction).
It can be seen that the SVM model has the best prediction performance among the four models in two directions. It is mainly
due to that SVM implements the structural risk minimization principle and over-fitting is unlikely to occur with SVM.
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Although the performance of the ANN model is worse than that of the SVM, the ANN model outperforms the k-NN and LR
models. In summary, the performance of the LR model is worst among the four models. However, for the arrival time pre-
diction for the west direction, the LR model is better than the k-NN model. From Appendix A, the average MAPEs of the SVM
model are 11.5% and 6.69% for the east direction (from PCS to the CHT bus stop) and the west direction (from CRN to the CHT
bus stop). For the fourteen bus routes, the MAPEs of the SVM model are from 4.49% to 13.23%, while the MAPEs of the ANN, k-
NN and LR models are from 6.84% to 15.11%, from 6.94% to 16.89% and 6.78% to 24.99%, respectively. When comparing the
maximum error of the prediction for each route using the different methods, it can be found that the maximum prediction
error of the SVM model is the lowest except for the prediction for the route nos. 103 and 108. In summary, the SVM model
has the best prediction performance among the four models for ten out of fourteen bus routes. Although the performance of
the ANN model is slightly better than the one of the k-NN model, the k-NN model is still an alternative method for bus run-
ning time prediction due to its simple structure.

Fig. 12 and Table 4 show the bus running times predicted by the four models against the observed running times. It can be
seen from the figure that the results of the SVM model are much closer to the observed data than the other three methods.
The correlation coefficient (r) which reflects the accuracy of the bus running time prediction of the four methods is 0.90, 0.87,
0.85, 0.84, respectively. The coefficient implies that the proportion of the predicted bus running times from each model is
well fitted with the observed bus running times. Also, it can be seen from the results of the t-tests of the four methods that
only the SVM and ANN models passed the t-tests, whose t-values are larger than 1.96. This indicates that the SVM and ANN
models are significant at 5% level. In summary, based on the validation results, the performance of the SVM model for bus
arrival time prediction at the stop with multiple routes is shown to be satisfactory.

4. Conclusions

This paper investigated the bus arrival time prediction at bus stop with multiple routes. Bus running times of different
routes were used to predict the bus arrival times by four proposed models, namely, SVM, ANN, k-NN and LR. In order to de-
velop these four proposed models, bus running and arrival time data were collected from the observation surveys near the
CHT in Kowloon urban area of Hong Kong. The results showed that the proposed models were more accurate than the models
based on bus running times of single route. Moreover, the comparison results showed that the performance of the SVM mod-
el was the best among the four models for the bus arrival time prediction. It was also found that k-NN was an alternative
method for the bus running time prediction compared with ANN. In summary, LR was the worst one among four models
since its performance varied from the similarity between the current data and the preceding data, while compared with
other three models, LR had the simplest structure.

In this paper, only the bus data was used to estimate the current traffic conditions. Further study will consider more fac-
tors such as running times of other vehicles (by type) and traffic flow variation so as to enhance the performance of the pro-
posed prediction models.
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Appendix A. The details of results of four methods
Route no.
 PCS–CHT
 CRN–CHT
101
 107
 108
 109
 111
 116
 AVE
 102
 103
 104
 110
 112
 117
 118
 171
 AVE
MAE (s)
 SVM
 39.4
 34.9
 28.7
 25.2
 34.2
 32.6
 32.5
 32.9
 24.4
 29.4
 34.8
 32.6
 21.3
 26.2
 36.5
 29.8

ANN
 38.7
 29.5
 29.5
 35.0
 41.3
 32.0
 34.3
 38.8
 35.4
 32.0
 58.9
 35.7
 31.0
 29.0
 45.5
 38.3

k-NN
 40.6
 34.6
 28.8
 28.6
 46.9
 36.6
 36.0
 47.9
 30.2
 40.3
 60.0
 32.4
 38.6
 36.4
 40.5
 40.8

LR
 47.1
 41.2
 21.8
 59.7
 40.6
 31.6
 40.3
 45.5
 31.2
 39.4
 32.4
 31.2
 53.3
 34.0
 41.4
 38.6
MAPE (%) SVM 13.2 11.7 9.7 11.3 12.3 11.0 11.6 7.2 5.5 7.0 7.7 7.1 4.5 6.2 8.3 6.7

ANN
 12.8
 11.1
 10.4
 14.5
 15.1
 11.4
 12.6
 8.6
 8.4
 7.4
 13.0
 7.8
 6.9
 6.8
 10.5
 8.7

k-NN
 13.6
 10.8
 10.0
 12.7
 16.9
 13.1
 12.8
 10.4
 7.3
 9.5
 13.6
 6.9
 8.6
 8.7
 9.1
 9.3

LR
 16.8
 14.7
 7.8
 25.0
 14.1
 11.2
 14.9
 10.1
 7.6
 9.1
 7.4
 6.8
 11.7
 8.3
 9.3
 8.8
(continued on next page)
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Appendix A (continued)
Route no.
 PCS–CHT
 CRN–CHT
101
 107
 108
 109
 111
 116
 AVE
 102
 103
 104
 110
 112
 117
 118
 171
 AVE
Max (s)
 SVM
 91.7
 68.4
 55.7
 49.0
 87.2
 72.3
 70.7
 75.7
 62.3
 57.5
 73.8
 62.7
 43.7
 52.3
 61.0
 61.1

ANN
 103.8
 104.7
 55.0
 74.0
 96.3
 77.1
 85.2
 97.6
 79.8
 107.7
 141.0
 65.8
 44.0
 62.0
 96.3
 86.8

k-NN
 120.6
 70.4
 48.4
 58.2
 165.6
 81.5
 90.8
 149.2
 59.7
 122.1
 130.6
 64.4
 60.0
 108.4
 101.0
 99.4

LR
 107.3
 152.5
 51.4
 201.4
 110.5
 91.9
 119.2
 83.4
 71.4
 98.4
 83.0
 69.3
 101.2
 112.6
 104.1
 90.4
RMSE SVM 20.2 14.2 16.2 17.2 21.9 19.7 18.2 20.6 21.2 16.9 25.1 19.1 15.8 16.5 18.3 19.2

ANN
 27.6
 27.8
 13.4
 24.0
 23.2
 21.6
 22.9
 28.3
 23.8
 24.2
 42.1
 20.5
 12.1
 21.9
 23.2
 24.5

k-NN
 32.2
 23.8
 14.8
 16.5
 37.1
 22.4
 24.5
 37.7
 22.3
 32.7
 38.0
 21.3
 25.8
 30.5
 28.0
 29.5

LR
 31.8
 39.8
 17.6
 73.7
 25.9
 25.5
 35.7
 20.2
 23.0
 30.0
 27.2
 21.3
 30.8
 32.8
 29.5
 26.8
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1. Introduction

Finding efficient vehicle routes is a representative logistics
problem which has been studied for the last 40 years. A typical
vehicle routing problem (VRP) aims to find a set of tours for several
vehicles from a depot to a lot of customers and return to the depot
without exceeding the capacity constraints of each vehicle at min-
imum cost. Since the customer combination is not restricted to the
selection of vehicle routes, VRP is considered as a combinatorial
optimization problem where the number of feasible solutions for
the problem increases exponentially with the number of customers
increasing (Bell and McMullen, 2004).

Heuristic algorithms such as simulated annealing (SA) (Chiang
and Russell, 1996; Koulamas et al., 1994; Osman, 1993; Tavakk-
oli-Moghaddam et al., 2006), genetic algorithms (GAs) (Baker and
Ayechew, 2003; Osman et al., 2005; Thangiah et al., 1994; Prins,
2004), tabu search (TS) (Gendreau et al., 1999; Semet and Taillard,
1993; Renaud et al., 1996; Brandao and Mercer, 1997; Osman,
1993) and ant colony optimization (Doerner et al., 2002; Reimann
et al., 2002; Peng et al., 2005; Mazzeo and Loiseau, 2004; Bullnhei-
mer et al., 1999; Doerner et al., 2004) are widely used for solving
the VRP. Among these heuristic algorithms, ant colony optimiza-
tions (ACO) are new optimization methods proposed by Italian
researchers Dorigo et al. (1996), which simulate the food-seeking
behaviors of ant colonies in nature. It has been successfully applied
as a solution to some classic compounding optimization problems,
e.g. traveling salesman (Dorigo et al., 1996) quadratic assignment
(Gambardella et al., 1997), job-shop scheduling (Colorni et al.,
ll rights reserved.
1994), telecommunication routing (Schoonderwoerd et al., 1997),
etc.

If taking the central depot as the nest and customers as the food,
the VRP is very similar to food-seeking behaviors of ant colonies in
nature. This makes the coding of an ant colony optimization for the
VRP is simple. Among the earliest studies was that of Bullnheimer
et al. (1997) who presented a hybrid ant system algorithm with the
2-opt and the saving algorithm for the VRP. Other researches of the
ACOs to the VRP included the work by Bullnheimer et al. (1999),
Bell and McMullen (2004), Chen and Ting (2006). In the ACOs,
the 2-opt exchange was used as an improvement heuristic within
the routes found by individual vehicles and the pheromone updat-
ing rules mainly considered the global feature of the solution. This
paper proposes an improved ant colony optimization with a new
pheromone updating rule that can integrate the global feature
and the local feature, a mutation operation and the 2-opt exchange
for the VRP. The remainder of the paper is organized as follows.
Section 2 presents the mathematical model for VRP. In Section 3,
we present the IACO with ant-weight strategy and the mutation
operation. Some computational results are discussed in Section 4
and lastly, the conclusions are provided in Section 5.

2. Vehicle routing problem

The VRP is described as a weighted graph G = (C,L) where the
nodes are represented by C = {c0, c1, . . .,cN} and the arcs are repre-
sented by L = {(ci, cj): i – j}. In this graph model, c0 is the central de-
pot and the other nodes are the N customers to be served. Each
node is associated with a fixed quantity qi of goods to be delivered
(a quantity q0 = 0 is associated to the depot c0). To each arc (ci, cj) is
associated a value di,j representing the distance between ci and cj.

mailto:minlfish@yahoo.com.cn
http://www.sciencedirect.com/science/journal/03772217
http://www.elsevier.com/locate/ejor


Fig. 2. An example of a parent solution.
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Each tour starts from and terminates at the depot c0, each node ci

must be visited exactly once, and the quantity of goods to be deliv-
ered on a route should never exceed the vehicle capacity Q.

3. Improved ACO for VRP

3.1. Generation of solutions

Using ACO whose colony scale is P, an individual ant simulates a
vehicle, and its route is constructed by incrementally selecting cus-
tomers until all customers have been visited. The customers, who
were already visited by an ant or violated its capacity constraints,
are stored in the infeasible customer list (tabu).

The decision making about combining customers is based on a
probabilistic rule taking into account both the visibility and the
pheromone information. Thus, to select the next customer j for
the kth ant at the ith node, the ant uses the following probabilistic
formula.

pijðkÞ ¼
sa

ij
�gb

ijP
hRtabuk

sa
ih
�gb

ih

j R tabuk

0 otherwise

8<: ð1Þ

where pij(k) is the probability of choosing to combine customers i
and j on the route, sij the pheromone density of edge (i, j), gij the vis-
ibility of edge (i, j), a and b the relative influence of the pheromone
trails and the visibility values, respectively and tabuk is the set of
the infeasible nodes for the kth ant.

3.2. Mutation operation

Mutation operation referring to genetic algorithm (Yu and Yang,
2007; Yu et al., 2007) alters each child at a predefined probability.
The operators can help the IACO to reach further solutions in the
search space. The idea of the mutation operation is to randomly
mutate the tour and hence produce a new solution that is not very
far from the original one. In this paper, the mutation operator is de-
signed to conduct customer exchanges in a random fashion. Fig. 2
shows the representation of the parent solution in Fig. 1. The steps
for the mutation operation are as follows:

Step 1. Select the two tours from the selected parent solution
and select the mutating point(s) from the each mutating
tour. Fig. 3a shows the 9th customer in the 3rd tour and
the 12th customer in the 4th tour are selected.
Fig. 1. An example of the VRP.
Step 2. Exchange the customers in the different tours and gen-
erate the child solution (see Fig. 3b).

Step 3. Ensure the child solution local optimality. The 2-opt is
applied to improve the mutated tours in child solution.
Finally, the representation and the tours of the mutated
child solution is as Figs. 3c and 4.

However, the mutation operation may violate vehicle capacity
constraints. There are two approaches to deal with this situation.
The first one is to assign a very high cost for such candidate solu-
tions and accordingly reduce their probability of being selected
in the forthcoming search. The second approach is to try to fix
the resultant capacity violations by adjusting the delivery
amounts. The advantage of the second approach over the first
one is that it is more suitable in problems that are more likely to
produce vehicle capacity violations and it enables IACO to investi-
gate further points in the search space. Therefore, the second ap-
proach is adopted to deal with the vehicle capacity violation
situation.

Each route of the solution is mutated with a certain probability
pm. Usually, the diversity of the solution is large at the beginning of
a run and decreases with the time. We adapt the mutation rate
during a run to promote a fast convergence to good solutions dur-
ing the first generations and to introduce more diversity for escap-
ing from local optima during later stages. The mutation probability
at the generation t is

pmðtÞ ¼ pmin
m þ ðpmax

m � pmin
m Þ

1�t=T ð2Þ

where pmin
m and pmax

m are the lower and the upper mutation rates for
the beginning and ending, respectively and T and t are the given
maximum number of generations and the current generation of
the iteration, respectively.

According to preliminary tests, we suggest to set the lower
mutation rate to pmin

m ¼ 1=nc, where nc is the number of the cus-
tomers, and the upper mutation rate to pmax

m ¼ 1=nv, where nv is
the amounts of the routes in the solution.
Fig. 3a. Procedure of mutation (Step 1).



Fig. 3b. Procedure of mutation (Step 2).

Fig. 4. Tours of the mutated child solution.

Fig. 3c. Procedure of mutation (Step 3).
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3.3. Local search

In the 2-opt exchange, all possible pairwise exchanges of cus-
tomer locations visited by individual vehicles are tested to see if an
overall improvement in the objective function can be attained. The
method has been used in several ACOs (Bullnheimer et al., 1997,
1999; Bell and McMullen, 2004; Chen and Ting, 2006) for the VRP.

3.4. Update of pheromone information

The updating of the pheromone trails is a key element to the
adaptive learning technique of ACO and the improvement of future
solutions. First, Pheromone updating is conducted by reducing the
amount of pheromone on all links in order to simulate the natural
evaporation of the pheromone and to ensure that no one path be-
comes too dominant. This is done with the following pheromone
updating equation,
snew
ij ¼ q� sold

ij þ
XK

k

Dsk
ij q 2 ð0;1Þ ð3Þ

where snew
ij is the pheromone on the link (i, j) after updating, sold

ij

the pheromone on the link (i, j) before updating, q the constant
that controls the speed of evaporation, k the number of the
route, K the number of the routes in the solution and K > 0
and Dsk

ij are the increased pheromone on link (i, j) of route k
found by the ant.

The pheromone increment updating rule uses the ant-weight
strategy presented by Yang et al. (2007). Specifically, the strategy
is written as:

Dsk
ij ¼

Q
K�L�

Dk�dij

mk�Dk if link ði; jÞ on the kth route

0 otherwise

(
ð4Þ

where Q is a constant, L the total length of all routes in the solution,
i.e. L ¼

P
kDk, Dk the length of the kth route in the solution, dij the

length of edge (i, j) and mk the number of customers in the kth
routes and mk > 0.

The ant-weight strategy updates the increased pheromone in
terms of the solution quality and the contribution of each link to
the solution, which consists of two components: the global phero-
mone increment and the local pheromone increment. In the ant-
weight strategy, the quantity of the global pheromone increment,
Q/(K�L), of each route is related to the total length of the solution,
while the one of the local pheromone increment (Dk�dij)/(mk�Dk)
of each link is based on the contribution of link (i,j) to the solution.
Since the strategy for updating the increased pheromone consid-
ered both the global feature and local one of a solution, it can pos-
sibly ensure that the assigned increased pheromone is directly
proportional to the quality of routes. The more favorable the
link/route is the more pheromone increment is allocated to it,
and the more accurate directive information is provided for later
search. Meanwhile, by adjusting the pheromone assigning method
for the links of current optimal path automatically, the algorithm
can facilitate more delicate searches in the next cycle in a more
favorable area, which assist in expanding the learning capacity
from past searches. The parameters for updating the increased
pheromone on the edges in the solution in Fig. 1 are calculated
as Fig. 5.

Moreover, in order to prevent from local optimization and in-
crease the probability of obtaining a higher-quality solution,
upper and lower limits [smin, smax] are fixed to the updating
equation.

smin ¼ Q
X

i

,
2d0i; ð5Þ

smax ¼ Q
X

i

,
d0i; ð6Þ

where d0i is the distance from the central depot to the ith customer.



Fig. 5. Parameters for updating the increased pheromone.

Fig. 6. The flowchart of IACO.

Table 1
Computational results using IACO and the well-known published results

No. n Q Best know Best Worst Average Time

C1 50 160 524.61a 524.61 524.61 524.61 2
C2 75 140 835.26a 835.26 859.3 848.85 11
C3 100 200 826.14a 830.00 861.12 844.32 30
C4 150 200 1028.42a 1028.42 1067.1 1042.52 211
C5 199 200 1291.45b 1305.5 1344.41 1321.91 677
C6 50 160 555.43a 555.43 568.89 560.14 24
C7 75 140 909.68a 909.68 942.29 919.1 20
C8 100 200 865.94a 865.94 888.89 871.52 57
C9 150 200 1162.55a 1162.55 1228.9 1194.87 307
C10 199 200 1395.85b 1395.85 1433.68 1412.92 840
C11 120 200 1042.11a 1042.11 1056.26 1048.12 61
C12 100 200 819.56a 819.56 842.51 823.66 31
C13 120 200 1541.14a 1545.93 1572.29 1552.25 127
C14 100 200 866.37a 866.37 869.12 867.05 43

a Taillard (1993).
b Rochat and Taillard (1995).

174 B. Yu et al. / European Journal of Operational Research 196 (2009) 171–176
3.5. Overall procedure

The flowchart of our IACO for the VRP is shown in Fig. 6.

4. Numerical analysis

The heuristics described in the previous sections is applied to
the 14 vehicle routing problems which can be downloaded from
the OR-library (see Beasley, 1990), and which have been widely
used as benchmarks, in order to compare its ability to find the solu-
tion to VRP. The information of the 14 problems is shown in col-
umns 2–4 in Table 1, which consists of the problem size n, the
vehicle capacity Q, and the well-known published results (Taillard,
1993; Rochat and Taillard, 1995). The IACO parameters used for
VRP instances are Q = 1000, a = 2, b = 1 and q = 0.8. Then, the IACO
were coded in Visual C++.Net 2003 and executed on a PC equipped
with 512 MB of RAM and a Pentium processor running at
1000 MHz. Columns 5–8 present the results from IACO including
the best solution, the worst solution, and the average solution
and average run time (second). The numbers in bold are the results
as the best-known solutions.

To evaluate the ant-weight strategy and the mutation opera-
tion, the two ant colony optimizations with different strategy are
constructed. The first one is a standard ant colony optimization
with the ant-weight strategy (denoted by ACO-W) and the other
is a standard ant colony optimization with the mutation operation
(denoted by ACO-M). The computational results are as shown in
Table 2. The numbers in bold are the best solutions among three
algorithms. It can be observed that ACO-M can obtain the same
solutions as IACO in test problem 1, 2, 3, 6, 7, 11, 12 and 14, while
ACO-W can only obtain the optimum solutions in test problem 1, 2,
6, 7 and 14. Compared with ACO-W, the ACO-M generally provides
better solutions for the 14 problems. This may be attributed that
the introduction of the mutation operation can diversify the ant
colony, explore new possible solution space and prevent the algo-
rithm from trapping in local optimization. However, while the
mutation operation improves the solutions, it also increases the
computation times. We can see that the times consumed by



Table 2
Computational results using IACO, ACO-W and ACO-M

No. IACO ACO-W ACO-M

Best Worst Average Time Best Worst Average Time Best Worst Average Time

C1 524.61 524.61 524.61 2 524.61 524.61 524.61 2 524.61 524.61 524.61 2
C2 835.26 859.3 848.85 11 838.25 859.3 850.05 10 835.26 859.3 849.33 13
C3 830.00 861.12 844.32 30 834.36 861.12 851.02 27 830.00 861.12 847.26 51
C4 1028.42 1067.1 1042.52 211 1044.89 1087.3 1058.62 198 1033.26 1084.31 1052.52 584
C5 1305.5 1344.41 1321.91 677 1335.36 1387.85 1362.37 602 1310.21 1377.29 1340.07 1,134
C6 555.43 568.89 560.14 24 555.43 571.17 563.32 24 555.43 577.49 564.18 24
C7 909.68 942.29 919.1 20 909.68 947.87 927.06 19 909.68 950.1 931.07 22
C8 865.94 888.89 871.52 57 876.52 901.06 888.87 52 869.91 901.06 880.03 79
C9 1162.55 1228.9 1194.87 307 1204.47 1279.39 1252.05 292 1188 1253.31 1222.24 772
C10 1395.85 1433.68 1412.92 840 1439.07 1520.04 1487.78 780 1412.12 1492.36 1466.62 1,320
C11 1042.11 1056.26 1048.12 61 1051.71 1077.33 1059.13 55 1042.11 1060.61 1055.52 204
C12 819.56 842.51 823.66 31 833.31 850.04 840.61 30 819.56 851.11 844.06 77
C13 1545.93 1572.29 1552.25 127 1571.05 1622.88 1592.83 118 1556.86 1618.58 1588.21 402
C14 866.37 869.12 867.05 43 866.37 870.18 868.09 38 866.37 870.18 868.61 79
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ACO-M are more than ACO-W. This may be because that in ACO-W,
the ant-weight strategy is used for updating the increased phero-
mone. It can assign increased pheromone according to the quality
the solution. This improves the learning capacity of the algorithm
from past searches, and enhances the efficiency. Furthermore, IACO
integrated the ant-weight and the mutation operation can provide
the best solutions and consume the less computation times com-
pared with ACO-W and ACO-M.
Table 3
Deviations from the best known solution of several metaheuristic approaches

Prob. RR-PTS G-TS OSM-TS OSM-SA B-AS IACO

C1 0.00 0.00 0.00 0.65 0.00 0.00
C2 0.01 0.06 1.05 0.40 1.08 0.00
C3 0.17 0.40 1.44 0.37 0.75 0.47
C4 1.55 0.75 1.55 2.88 3.22 0.00
C5 3.34 2.42 3.31 6.55 4.03 1.08
C6 0.00 0.00 0.00 0.00 0.87 0.00
C7 0.00 0.39 0.15 0.00 0.72 0.00
C8 0.09 0.00 1.39 0.09 0.09 0.00
C9 0.14 1.31 1.85 0.14 2.88 0.00
C10 1.79 1.62 3.23 1.58 4.00 0.00
C11 0.00 3.01 0.09 12.85 2.22 0.00
C12 0.00 0.00 0.01 0.79 0.00 0.00
C13 0.59 2.12 0.31 0.31 1.22 0.31
C14 0.00 0.00 0.00 2.73 0.08 0.00
Average 0.55 0.86 1.03 2.10 1.51 0.14

Table 4
Computation times of several metaheuristic approaches

Probability RR-PTS G-TS OSM-TS

Run times Scaled times Run times Scaled times Run times Sc

C1 66 5.0 84 7.5 60 2.
C2 2604 197.9 2352 210.2 48 1.
C3 1578 119.9 408 36.4 894 29
C4 2910 221.2 3270 292.1 1764 58
C5 4626 351.6 5028 449.1 1704 56
C6 144 10.9 468 41.8 60 2.
C7 1236 94.0 1908 170.4 744 24
C8 1134 86.2 354 31.6 1962 64
C9 1794 136.3 1278 114.1 2472 81
C10 2562 194.8 2646 236.4 4026 13
C11 672 51.1 714 63.8 780 25
C12 96 7.3 102 9.2 342 11
C13 120 9.1 2088 186.5 1578 52
C14 1482 112.7 1782 159.2 582 19
Average – 114.14 – 143.46 – 40
Our IACO are compared with five other meta-heuristic ap-
proaches in the paper proposed by Bullnheimer et al. (1997), which
consisted of parallel tabu search algorithm (RR-PTS) by Rego and
Roucairol, a tabu search algorithm (G-TS) by Gendreau et al., tabu
search (OSM-TS), a simulated annealing algorithm (OSM-SA) by
Osman and ant system algorithm (B-AS) by Bullnheimer et al.
(1997). The comparison of the deviations from the best known
solution is shown in Table 3. The performance of our IACO is best
among all meta-heuristic approaches, who produces in eleven
problems of fourteen test problems and yields the lowest average
deviation. Also, compared with OSM-SA, the tabu search ap-
proaches are able to provide better solutions. Also, compared
OSM-SA, the tabu search approaches can provide better solutions.

For a correct evaluation and comparison of the quality of six
algorithms the computing times must be taken into account. How-
ever, a correct evaluation and comparison of the computing times
is generally tough due to the enormous variety of computers avail-
able and used by different researchers. A very rough measure of
computers’ performance can be obtained using Dongarra’s (Don-
garra, 2001) tables where the number (in millions) of floating-
point operations per second (Mflop/seconds) executed by each
computer was used, when solving standard linear equations, with
LINPACK program. Regarding computational times, Rego and Rou-
cairol used a sun sparc 4 (about 5.7 MFlop/s), Gendreau et al. used
a 36 MHz Silicon Graphics (about 6.7 MFlop/s), Osman used a VAX
8600(about 2.48 MFlop/s), Bullnheimer et al. used a Pentium
100 MHz (about 8 MFlop/s). In this research, the Pentium 1 GHz
running IACO has an estimated power of 75 MFlop/s. Table 4 shows
OSM-SA B-AS IACO

aled times Run times Scaled times Run times Scaled times Run times

0 6 0.2 6 0.6 2
5 3564 117.8 78 8.3 11
.5 6174 204.1 228 24.3 30
.3 4296 142.1 1104 117.8 211
.3 1374 45.4 5256 560.6 677

0 696 23.0 6 0.6 24
.6 312 10.4 102 10.9 20
.8 366 12.1 288 30.7 57
.8 59,016 1951.5 1650 176.0 307
3.0 2418 79.9 4908 523.5 840
.8 264 8.7 552 58.9 61
.2 48 1.5 300 32.0 31
.1 4572 151.1 660 70.4 127
.3 300 9.9 348 37.1 43
.17 – 196.98 – 117.98 172.93
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the origin computation times and the scaled computation times,
which use Pentium 1 GHz as the baseline, of six approaches.

The performance of IACO is competitive when compared with
other meta-heuristic approaches, such as SA, and TS. Although
the run times are not favor in IACO, our IACO still seems to be supe-
rior in terms of solution quality with an average deviation of 0.14%.
Considering the very rough measure, the scaled times are viewed
as the assistant aspect of the performance. Regarding the computa-
tion efficiency, we find that the IACO can find very good solutions
in an acceptable time.

5. Conclusions

The VRP has been an important problem in the field of distribu-
tion and logistics. Since the delivery routs consist of any combina-
tion of customers, this problem belongs to the class of NP-hard
problems. This paper presents an IACO with ant-weight strategy
and a mutation operation. The computational results of 14 bench-
mark problems reveal that the proposed IACO is effective and effi-
cient. Further research on additional modifications of the IACO to
extensions of the vehicle routing problem with time windows or
with more depots, are of interest.
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